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Let X be a compact subset of [a, b], and let C(X) denote the Banach space
of all real-valued continuous functions defined on X. Let II denote the set of
polynomials in C(X). Consider two extended real-valued functions t and u
defined on X which satisfy the following conditions.

(i) t may take on the value - 00, but never +00;

(ii) u may take on the value + 00, but never - 00;

(iii) there exist ~,y continuous on [a, b] such that t(x) :(; ~(x) :(;
y(x) :(; u(x) for all x E X.

(iv) the ~, y of (iii) may be chosen so that ~(x) = y(x) at a finite number
of points of [a, b] only; and moreover,

(v) if t(y) = y(y), then there exist constants g, t, Tj, if; (with Tj > 0,
g oF t) and apositive integer (X such that, for x E Ni y),

R(if;,~(x) - ~(y)) :(; t(x - y)" :(; g(x - y)"

:(; R(if;, y(x) - y(y)),

(1)

where R(if;, .) rotates the (x, u)-plane by an angle if; at the point (y, {( y) =
y( y)).

Let ll* = ll*(t, u) = {p Ell: l:(;p :(; u on X}. We may now state the
restricted range approximation scheme as follows.

RESTRICTED RANGE ApPROXIMATION SCHEME. Given / E C(X), approxi
mate/by polynomialsp Ell*.

This approximation scheme has been considered by several authors (e.g.,
[1,4-8]). Between them the questions of existence, uniqueness, charac
terization, and nontriviality of best restricted range (polynomial) approxima-
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tions have been considered, and some algorithms given. In this paper we
consider the related

Restricted Range Approximation with Side Conditions Scheme.
Given fE C(X) and bounded linear functionals x1*, ... , Xn *, approxi
mate fby polynomials p Ell* for which Xi*P = xi*f (i = 1, ... ,12).

We characterize those n-tuples of linear functionals for which one may
approximate any continuous function f arbitrary closely in the restricted
range approximation with side conditions (RRAS) scheme, for any permis
sible pair of bounding functions t, u. For simplicity we will assume that
X = [a, b] below.

1. PRELIMINARIES

In [1], conditions (i)-(v) are shown to be necessary and sufficient in order
that the restricted range approximation (RRA) scheme i8not triviaL Calling
pairs of bounding functions t, u satisfying conditions (i)-(v) permissible, we
thus have

PROPOSITION 1.1 [1]. Suppose fE C[a, b] and t, u, permissible bounding
junctions, are such that t ~j~ u. Then given E > 0, there exists a PE E

ll*(t, u) such that I!f - P. I! < E.

DEFINITION 1.1 [2]. Suppose Xl*,..., X n * is a set of bounded linear
functionals for which no nontrivial linear combination L;~l aixi* is ever a
positive linear functional on C[a, b]. Such sequences Xl *,..., Xn * are said to
be span indefinite.

PROPOSITION 1.2 [2]. Suppose Xl *, ... , Xn * are span indefinite on C[a, b].
Then there exists a polynomial p Ell for whixh (i) p(x) ~ 1 on [a, b] and (ii)
Xj*p = 0 (j = 1,... , n).

Remark 1.1. (a) Any bounded linear functional x* on C[a, b] has a
unique decomposition into the difference of two positive linear functionals
(called the positive and negative parts of x*);

X* = x+* - x-*, I! x* II = II x+* II + II x-* I! .

(b) A functional x* is purely atomic in case the associated Borel
measure [9, p. 34) is purely atomic.

(c) A functional y* is perfect nowhere dense in case (i) supp y* is the
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countable union of perfect, nowhere dense subsets of [a, b] having positive
Lebesgue measure, and (ii) y* has no atoms.

(d) A functional z* is of purely continuum type in case (i) z* has no
atoms, and (ii) [I z* 0 XJ II = 0 for every perfect, nowhere dense subset
J of [a, b].

(e) Any bounded linear functional x* has a unique decomposition
into the sum of a purely atomic, a perfect nowhere dense, and a purely
continuum linear functional;

x* = w* + y* + z*, II x* II = II w* II + II y*jl + II z* II.

(f) If w* is purely atomic and t Esupp w*, then t can have a zero
weight only if t is a cluster point of (a countably infinite number of) atoms ti

of w* having nonzero weights.

By the nodes of a pair of permissible bounding functions t, u we mean the
(finitely many) points t of [a, b] for which t(t) = u(t). We use card(T) ;;;:: No
to mean T has infinitely many points, and NiT) for a a-neighborhood of T.

2. RRAS FUNCTIONALS

DEFINITION 2.1. Suppose x* is a bounded linear functional on C[a, b]
x* is said to be aRRASfunctional in case given E > 0,/E C[a, b] and permis
sible t, u for which t ~f ~ u on [a, b] there necessarily exists a polynomial
p EII for which (i) x*p = x*f, (ii) t ~ p ~ u on [a, b], and (iii) Ilf - p II < E.

THEOREM 2.1. A bounded linear functional x* on C[a, b] is aRRAS
functional if and only if

card (supp x+* n supp x-*) ;;;:: No. (1)

Proof Set A = supp x+*, B = supp x-*. If A and B are disjoint,
consider t(x) = -1 = -u(x) and any fE C[a, b] for which f(x) is one on
supp x+* and minus one on supp x-*. Sincefis extremal for x* from C[a, b],
any p EII, II p II ~ 1 for which x*p = x*f must be one on supp x+* and
minus one on supp x-*. Since a nonconstant polynomial can attain its norm
at most finitely often, either A and B both have finite cardinality or else one
of A and B is empty. Suppose that B = 0 but A is not finite. Let tEA be a
cluster point of A and consider u(x) = f(x) = - I x - t I , t(x) - - 00.

Since x* is a positive linear functional, any p EII for which t ~ p ~ u and
x*p = x*fwill have to equalfon A, and hence at t. But no suchp Ell can
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exist. Suppose that A and B are both nonempty finite point sets, x* =
I.:"'-l (Xi"s. for some nonzero constants (Xi and distinct points Si E [a, b].
Without 'loss of generality suppose (Xl < °and consider I(x) = i x - Sl I =
u(x) - 1. Let / be any continuous function on [a, b] for which f(Si) =

if Cii < 0, U(Si) if Ci, > O. Again any polynomial pEn for which t~ p ~ u

and x*p = x*/ must interpolate / at the Si . But no polynomial can simul
taneously interpolate/at Xl and be inside the bounding functions t, u.

Hence suppose A n B = {tl , •.. , tu } is a nonempty finite point set. By the
definition of the positive and negative parts of a linear functional at least
one of A and B has to be infinite. Consider bounding functions I(x), u(x)
which (i) are equal at each ti , t(ti ) = u(ti ) = 0, (ii) in some o-neighborhood
of each t; , I(x) coincides with the function - i X - t i , and u(x) coincides
with the function 2 I x - t i I , (iii) are not equal if not at a ti , t(x) < 0 < u(x)
if x ¢c A n B, and (iv) are continuous on [a, b]. Choose a nonpolynomial (if
possible) /E C[a, b] for which (i) f(t i ) = 0 (i = 1,... , n), (ii) f(x) = I(x) if
x E B, and (iii)f(x) = u(x) if x EA. By constructionfis extremal for x* from
those continuous functions g E C[a, b] which lie within the bounding func
tions t, u. Hence any pEn for which t ~ p ~ u and x*p = x*f must
(without loss of generality) equal t(x) on A and u(x) on B. Since A or B is
infinite, any such polynomial is unique. Hence F can be approximated
arbitrarily closely by such polynomials if and only if/is already a polynomial,
in which case one of A and B must be a singleton (say A) and the other
infinite. Now consider t(tl) = 0, u(x) = f(x) any nonpolynomial for which
u(tI ) = 0 and t, u are permissible. Any p E II for which I ~ p ~ u and
x*p = x*f is again uniquely determined, but this time f is not a polynomia1.

Conversely, suppose A n B is infinite.

LEMMA 2. L Suppose FE C[a, b]. Suppose L, U are permissible bounding
functions for which L :-s:; F ~ U. Then there exist G, HE C[a, b] such that
L ~ G, H ~ U and x*G < x*F < x*H.

Suppose/EO C[a, b] and permissible t, u such that t ~f ~ u are fixed. For
€ > 0 arbitrary, let

L«x) = f(x) - €, if (f - t)(x) > € U«x) = f(x) + €, if (u - f)(x) > E

= t(x), otherwise: = u(x), otherwise.

At each node of L<, U., we have L.(x) = t(x), U.(x) = u(x), so the pair
L., U, is permissible. By Lemma 2.1 there are G., H. E C[a, bJ for which
L< ~ G., H. ~ U., and x*G. < x*f < x*H.. Let 'lJ = min{x*(H. - f),
x*(J- G.)}. By Proposition 1.1 there are polynomials P. ,q. for which
L. ~ p, , q, ~ U. , Ii G. - P. ii < 'lJ II x* ii-I /2, and H, - q. il < 'lJ il x*
Then x*p< < x*/ < x*q" and choose 0 < II. < 1 so that X*('\PE + (1 -
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A) qE) = x*f Since t::::::; LE::::::; APE + (1 - A) qE ::::::; UE::::::; u, also Ilf - (APE +
(1 - A) qE)11 < E and the proof is complete. I

Proof (of Lemma 2.1). Since L, U are permissible, T = {x E [a, b]:
L(x) = U(x)} contains at most a finite number of points. Since A n B is
infinite, C = (A n B)\T is then also infinite. Consider the decomposition of
Remark 1.1 for x*;

x+* = w+* + y+* + z+*,
(2)

Case 1. Suppose t E C n supp w-*. If t should be an isolated point of
supp x-*, then not only does the atom et have some positive weight ex in w-*
but there even exists an E > 0 for which x;* = x-* 0 X(t-E.t+E) = exet .
Since t 1= supp w+*, II xt* II = II x+* 0 X(t-E.HE) II -+ 0 as E -+ 0+. Hence there
is an ?] > 0 for which II xt* II < II x;* II = ex whenever 0 < E < ?].

Since t E C, let 0 < z/; < ?] be such that t(x) < u(x) whenever x E (t - Z/;,
t + z/;). For 0 < E < z/; choose gE' hE E C[a, b] so that

(i) gE(t) = jet) +(u(t) - j(t))/2,

(ii) gE(X) = j(x) if x E fa, b]\N,,(t), and

(iii) j(x)::::::; gix) ::::::; u(x) otherwise, while

(iv) hit) = j(t) - (j(t) - t(t))/2,

(v) hE(x) = j(x) if x E [a, b]\N,,(t), and

(vi) t(x)::::::; hE(x) ::::::; u(x) otherwise.

As E -+ 0+, x*g -+ x*f - (u - 1)(t)/2, x*hE-+ x*f+ (f - t)(t)/2, and
X*gE , x*hEare continuous functions of epsilon. If u(t) > jet), upon choosing
E > 0 sufficiently small the desired G of Lemma 2.1 has been found (similarly
for H if jet) > t(t)). Since t E T at least one of the above two cases hold:
suppose jet) < u(t) but that j(t) = t(t). Considering 0 < T < E < Z/;,
choose hE.~ E C[a, b] so that (i) hE.~(X) = j(x) if x E N~(t) u ([a, b]\Nit)),
(ii) hEAx) = j(x) + (u - j)(x)/2 if x = t + (lj; + ?])/2, and (iii) t(x)::::::;
hEAx) ::::::;j(x) otherwise.

Since tEA n B, x+* 0 X(t-E.t-T) U (HTot+E) is not the zero functional (for
o < T < E sufficiently small). In particular we can fix 0 < T < E < If; suffi
ciently small that x+*h.,~ > O. But then x-*hE,T = 0 implies x*h•.T> x*f
and hE,~ is our desired H.

If t is not an isolated point of supp x-* but still has a positive weight ex in
w-* a similar construction can be made. For t E supp y-*\supp r* set
D = fa, b]\supp y-*. Since supp y-* is the union of countably many perfect
nowhere dense subsets of [a, b], D is dense in [a,b]. If supp r* is actually a
finite union of perfect nowhere dense subsets of [a, b], then D is also open
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and we can obtain G, H by modifyingj on N.(t) n E and (N.(t)\NT(t)) n E
for some closed subset E of E. If supp r* is not a finite union of perfect
nowhere dense subsets of [a, b], suppose Y-* = 2:::1 f3i Ir . djLi , where T,:
is perfect nowhere dense of positive Lebesgue measure, f3i' > 0, and jLi has
total mass one. Since L::1 f3i = il r* ii < 00, L::v f3i -+ 0 as v -+ 00, and
hence II L::v f3i Ir

i
• djL; Ii -+ 0 as v -+ 00, it is possible to ignore all but

finitely many terms of r* with a negligible change in x-*. Hence the above
construction can again be carried out.

For tEO supp r*\supp z+*, for E > 0 sufficiently small ZC_* and w+* are
the zero functional and x+* reduces to y+*. Let {Dg}E>O be a decreasing
sequence of open subsets of [a, b]\{t} whose limit (intersection) is a proper
subset of supp y+* having positive measure and not containing t. In particular,
then, ii x-* 0 XD ii -+ 0 as E -+ 0+ but:1 x+* 0 XDg11-+ f3 > 0 for some positive
constant f3. Le£ting Eg be nonempty closed subsets of Dg having positive
measure, we can choose t > 0 sufficiently small so that r* makes a negli~

gible contribution to x* 0 XEg , and the analogous construction of G, H will
work.

If t EO supp w- * does not have a positive weight, then being a limit of atoms
of w-* having positive weight, choose an atom t' of w-* having positive weight
which will also lie in C.

Case n. tEO supp z+*\supp w*. If tEO supp r* also, then (locally at t)
supp z:* = [t - E, tJ and supp z;* = [t, t + EJ or vice versa (provided
E > 0 is sufficiently small). To construct G, increasejon [t, t + E] only: for H
increasejon [t - E, tJ only). IfYE* = w€* = owould be done. But t¢supp w*
means WE* = 0 if E is sufficiently small, and if YE * oF 0 for all E > 0,
D = [a, b]\supp YE * (if supp YE * is a finite union of perfect nowhere dense
sets) and modify jon E n [t, t + E] and E n [t - E, tl, E being some appro~

priate closed subset of D as above. If supp YE * is not a finite union, use the
same approach of considering only finitely many of the infinite terms of YE*
that was used above in Case I.

Thus suppose t ¢ supp r*. But then tEO Supp x+* implies tEO supp
and for epsilon sufficiently small x;* = y;*. Construct G, H by using the D
and {Dg}g>o approach as in Case I.

Case HI. t ¢ supp (w* + z*). Since t EO An E, tEO supp n supp r*.
Let D = [a, b]\supp y+*, E = [a, b] supp r*· Since ii y* [I = il y+* II +
II Y-* Ii , D contains all of supp Y-* except for a set of measure zero (similarly
for E and supp y+*). Letting D', E' be closed compact subsets of supp r*,
supp y+*, contained in D and E, and of positive measure, we can find disjoint
open neighborhoods E", E" of D', E' and construct our functions G, H by
modifyingj on D', E', respectively, I

COROLLARY 2.1. If x* is a RRAS junctional, j EO C[a, b] and t, u permis-
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sible bounding functions such that t <f< u on [a, b], then there exists
a v > 0 such that given I YJ I < v there exists a polynomial Pn for which t <

Pn < u and x*Pn = x*f+ YJ.

3. RRAS SEQUENCES

DEFINITION 3.1. A sequence of bounded linear functionals Xl *, ... , Xn * is
said to be a RRAS sequence in case any nonzero x* E <Xl*, ... , Xn *) is aRRAS
functional.

Below we will show that one may approximate any fE C[a, b] arbitrarily
closely in the RRAS scheme. Considering this eventuality, we first look at
some properties of RRAS sequences.

PROPOSITION 3.1. Suppose x l*, ... , x n * is a RRAS sequence on C[a, b].
Let S = {Sl , ..., sm} be a finite subset of [a, b]. Set Vi* = Xi* 0 XD, D =
[a, b]\S. Then VI *, ... , Vn* is also a RRAS sequence on C[a, b].

Remark 3.1. If S6 = N 6(S), D6 = [a, b]\S6, and Vt6 = Xi* 0 XD6 , it is
not the case that Xl *,..., Xn* a RRAS sequence on C[a, b] and S a finite
subset of [a, b] implies there is a 0 > 0 sufficiently small in order that V[,6 , ... ,
V;,6 is necessarily a RRAS sequence, As a counterexample consider the
following;

EXAMPLE 3.1. n = 1, XI* = Xn * = x* = f~ . dx - Z:::12- j e2-;. X* is a
RRAS functional, v* = x* 0 X(o,1] is a RRAS functional, but v* = f~ .fx 
z::~:~n6] 2-j e2-; has supp vt* n supp va-* = {2-1,... , 2-[-lna]}, a finite point set
only, and so by Theorem 2.1 ve* is not a RRAS functional, for any 0 > o.

PROPOSITION 3.2. Suppose Xl *, , Xn * is a linearly independent RRAS
sequence on C[a, b]. Let S = {Sl , , sm} be a finite subset of [a, b]. Set Vi* =
Xi* 0 XD, D = [a, b]\S. Then vl*, .." vn * is also a linearly independent RRAS
sequence on C[a, b].

COROLLARY 3.1. If Sa = NiS), D a = [a, b]\S6' and vte = Xi* 0 XDa,
then x l*, ... , x n * a linearly independent RRAS sequence on C[a, b] and Sa
finite subset of [a, b] implies there exists a 00 > °such that V[,6 ,... , v;,a is a
linearly independent span indefinite sequence whenever °< 0 < 00 •

Proof If v[,e ,..., v;:',a is not span indefinite for any 0 > 0, let ve* =
Z::~~l Oli,evta be a nonzero positive linear functional on C[a, b]. If 0' < 0",

* * ",",n * 1 b .. I' f . alV6" = V6' 0 XDa" = L..i=l Oli,e"Vu " must a so e a posItwe Inear unction .
Since supp x+* n supp x-* is infinite for any nonzero x* E<XI*,···, x n *),
for each such positive linear functional V6* there must be a 0' < 0 for which
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v; is not a positive linear functional. Thus given 0 < 0 arbitrarily small,
there exist infinitely many {CXi,v}v>O such that Vv* = 2::~~1 CXi,vVt8 are positive
linear functionals on C[a, b], and these Vv* generate a nonzero subspace
contained in Va' whenever 0 < 0'. But dim <v1*, ... , Vn *) = n < 00, so
na>o Va is also a nonzero subspace V of <VI*, ... , Vn*). But then some basis
of V must consist entirely of positive linear functionals, and so VI*,...,
cannot be a linearly independent RRAS sequence on qa, b]. I

Remark 3.2. If one finds it difficult to see why the V above must have a
basis consisting of positive linear functionals, replace the Va of the above
proof by positive cones Wa consisting entirely of positive linear functionals.
As above Wa d Wa, whenever 0' < 0 and no Wa is the zero cone (recall that
if u*, V* are linearly independent positive linear functionals, and if there
exist countably many distinct positive linear functionals in the positive cone
spanned by u* and V* which do not a11Iie in finitely many one-dimensional
subspaces of <u*, v*), then the positive cone spanned by u*, v* consists
entirely of positive linear functionals).

PROPOSITION 3.3. Suppose x* is a RRAS functional on qa, b]. Let
v* = x* 0 XB, B an open subset of [a, b]. Suppose v* is also aRRAS fimc
tional on qa, b]. Then there exists a closed subset E of B such that u* =
V* 0 XE = x* 0 XE is a (span) indefinite linear functional on C[a, b].

PROPOSITION 3.4. Suppose x I *,... , X n* is a linearly independent RRAS
sequence on C[a, b]. Let Vi* = Xi* 0 XB, B an open subset of [a, b]. Suppose
v1*, ... , vn* are also a RRAS sequence on C[a, b]. Then there exists a closed
subset E ofB such that UI *,... , Un* are span indefinite on qa, b], where Ui * =
Vi * 0 XE = Xi* 0 XE •

Proof By Proposition 3.3 there is a closed subset E' of B for which
Vn* 0 XE' is an indefinite linear functional. By induction there is a closed
subset E" of B for which v1* 0 XE","" VtI 0 XE", V41 0 XE", ... , vn* 0 XE" are
span indefinite (i = 0,... , n). Let E"' = E' U E" and set ui * = Vi* 0 Xe'". If

* * . t . d fi . C[ b] h f'l:"'n-l f3 *) I * .UI , •.. , Un IS no span In e mte on a, , t1 en some \'<:...';=1 iUi T Un IS

a (without loss of generality) positive linear functional on qa, b]. Since
supp u;;* n supp u~* is nonempty, necessarily

(i) (2::7::11f3iUi*)+ = u;;* + a* for some positive linear functional
on qa, b], and

(ii) u+* = (2::~~1 f3iUi*)- + b* for some positive linear functional b*
on qa, b].

~. * '*' * . d fi' fi' f3 f3 fi dulllce UI , ... , U;'_2 ,Un are span In e mte, XIng I"", n-2 we n at most
two values of f3n-I can be such that 2:,;::11 f3iUi* + Un* is not indefinite.
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Fixing fll ,..., fln-3 , fln-l we likewise find at most two values of fln-2' For
each of those values of fln-2 , fixing fll ,..., fln-3 as before we find at most two
values of fln-l (for a total of four). In this way at most finitely many u* E

<Ul*,..., U;_l) are such that u* + Un * can fail to be indefinite. For each of
them we can choose closed subsets E j of B for which (u* + Un *) 0 XE. is,
indefinite, and thus overall setting E = E'" U (UjBj) we find that the induced
Ui* = Vi* 0 XE are span indefinite on C[a, b]. I

Remark 3.3. Perhaps a more intuitive proof to Proposition 3.4 above is to
simply pick a closed subset E of B containing enough atoms of each Vi* in
its interior to render the induced linear functionals u/ linearly independent. o

Since without loss of generality each Vi* will have atoms the others lack,
choosing E to contain the proper atoms in its interior will not only render the.
induced Ui* linearly independent but also span indefinite, for each Ui* will
contain atoms lying in supp ut* n supp u-;* which will not be atoms of any
Uj* (j oF i) and hence cannot disappear in any linear combination of the Ui*

without taking a zero coefficient.
We generalize Lemma 2.1 next.

LEMMA 3.1. If x l *, ..., xn* is a linearly independent RRAS sequence on
C[a, b], fE C[a, b] and t, u permissible bounding functions such that t ~
f~ u [a, b], then there exists a v> 0 such that given U = (Ul , ... , un) E

{-I, l}n there exists a continuous function j for which both

(i) t ~ ha ~ u on [a, b], and (ii) ujx/(ha - f) > v (j = 1,... , n).

Proof Set A = {x E [a, b]:f(x) = t(x)}, B = {x E [a, b]: t(x) <f(x) <
u(x)}, C = {x E [a, b]: f(x) = u(x)}; D = A U C, T = {x E [a, b]: t(x) =
u(x)} = An C, r i* = Xi* 0 XB' Suppose rl *, , rl-' * is a maximal linearly
independent RRAS sequence among the rl *, , r n *, 0 ~ fL ~ n. By Proposi-
tion 3.4 let E be a closed subset of B for which r l *,... , rl-' * is a (linearly
independent) span indefinite sequence on C[a, b]. By Corollary 3.1 let I) > 0
be such that Xl* 0 XH , ... , Xn* 0 XH is a (linearly independent) span indefinite
sequence of linear functionals on C[a, b], where H = [a, b]\NaCT). Since T
and E are disjoint closed subsets of [a, b], suppose that I) > 0 is
sufficiently small such that H contains E in its interior (normality of the
interval [a, b]). Set Si* = Xi* 0 XI' 1= (H n D) U E, and !/J = mmin
{min{(u - t)(x): x E H n D},min{(u - f)(x): x E E}, min{(f - t)(x): x E E}}.
By separately analyzing the Xl *,... , xI-'* and the X;+l , ... , Xn* we observe that
the Sl *,... , Sn* may be assumed to be a (linearly independent) span indefinite
sequence on C[a, b]. Writing each functional as Si* = Si* 0 XAr.H + Si* 0

XCr.H + Si* 0 XE , defining t i* = Si* 0 XAr.H - Si* 0 XCr.H + Si* 0 XE we have
that t i *, ..., t n * is also a (linearly independent) span indefinite sequence on
C[a, b].
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By linear independence choose pi"EC[a,b] (i= l, ...,n: ~ = -1,1) so
that S/Pi" = ~[)ij. By span indefiniteness (Proposition 1.2) choose k'E
C[a, b] so that (i) k' ~ 1 on [a, b], and (ii) t/k' = 0 (j = 1,... , n). Since
A n H, C n H, E are mutually disjoint compact subsets of [a, b] whose
union contains the support of all the Sk* and t j *, choose a k E C[a, b]so that
(i) k(x) = -k'(x) if x E C n H, (ii) k(x) = k'(x) if x E(A n H) U E, and
(iii) II k II = Ii k' II. Since sj*k = tj*k' and if; is positive, setting qi" = ex(Pi., +
f3k) we may choose positive constants ex and f3 so that (i) 0 < qi,,(X) :s;; if; for
x E An H, (ii) -if; ~ qi,,(X) < 0 for x E C n H, (iii) -if; ~ qiJX) ~ if; for
x E E, (iv) Sj*Pi,' = 0 if j # i, and (v) ~Si*Pi,' > 0, Set )I = (2n)-1 min
{! Xj*(qi,JI : i = 1,..., n and ~ = -1, I}. Consider the permissible bounding
functions U(x) = u(x) - lex), L(x) = t(x) - lex). Observe that (i) L, U
has the same nodes as t, u (the set T), (ii) L(x) = 0 and 2<f; ~ U(x) for x E
A n H, (iii) L(x) ~ - 2if; and U(x) = 0 for x EC n H, and (iv) L(x) ~ - 2if; <
o < 2if; :s;; U(x) for x E E. Since L(x) < q;,o(x) < U(x) for x E I a compact
subset of [a, b], and L(x) ~ 0 ~ U(x) globally on [a, b], for "fj > 0 sufficiently
small we can find continuous functions hi,L,n so that (i) hi",,,(x) = qi,JX) if
x E I, (ii) hi",nCX) = 0 if dist(x, I) ~ 7), and (iii) L(x) ~ hi,L,,,(x) ~ U(x)
otherwise. Since I n = {x E [a, b]: dist (x, I) < 'l}} is a decreasing sequence of
open subsets of [a, b] whose limit (intersection) is I, x/hi.'"n -+ s/hi",n as
YJ -+ O. Fix 7) > 0 so that I(x/ - Sj*) hi,L,,, I < n-l . 10-6

)1 uniformly in i and
~ and set ha = n-l L:;~l hi,a,n . Then L :s;; ha ~ U and xj*ha = n-l(xj*hi,a.,,,)
+ n-l L::l,i,oj x/hi,ai,"I' Since the last term has magnitude at most 1O~6v
while the first term has magnitude at least 2)1, with sign aj, we find
ajxj*ha > )I (j = 1, ... , n) and the conclusion of the lemma follows. I

THEOREM 3.1. Suppose Xl *, ... , Xn* is a RRAS sequence of linear func
tionals on C[a, b]. Then given f E C[a, b] and permissible t, u for which t :s;;
f ~ u there necessarily exists a polynomial P E for which t ~ P ~ u and
Xi*P = xi*f(i = 1, ... , n).

Proof Without loss of generality suppose the Xl *, ... , Xn* are linearly
independent on C[a, b]. Let u = (al ,... , un) E{-I, 1}n be arbitrary. Set
T = (al ,... , Un-I' -an) and choose continuous functions ha , hTby Lemma 3.1.
By Proposition 1.2, we may find polynomials Pa, PT for which t ~ Pa ,
PT ~ u and ajxj*(Pa - 1) > v, TjXj*PT > )I (j = 1, ... , n). Let 0 < ,\ < 1 be
such that xn*('Apa + (1 - 'A) PT - 1) = 0 and set Pa' = ilpa + (l - A) PT'
Then (i) t ~Pa' ~ u, (ii) xn*(Pa' - 1) = 0, (iii) ajx;*(Pa' - f) >)1 (j = 1,
.. " n - 1), and (iv) (al ,..., Un-I) E{-l, 1}n-1 is arbitrary. By induction there
is a polynomial pEn for which t ~ P ~ u and Xj*(p - 1) = 0 (j = 1;
..., n). I

COROLLARY 3.2. Suppose Xl *, ... , Xn* is a RRAS sequence of linear
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functionals on C[a, b]. Then given fE C[a, b], permissible t, u for which
t :( f:( u, and E > 0 arbitrary there necessarily exists a polynomial pEnfor
which (i) t:(p :( u, (ii) Xj*P = Xj*f(j = 1,... , n), and (iii) [If - p I[ :( E.

Remark 3.4. Corollary 3.2 is our desired Weierstrass theorem for RRAS
approximation with arbitrary permissible bounding functions. Notice the
manner we have derived our Weierstrass theorem as a corollary of
Theorem 3.1 parallels the derivation of the Weierstrass-type theorem Propo
sition 1.2 in [1] as a corollary to a theorem (Proposition 1.1) similar in
statement to Theorem 3.1 above. Such an approach (obtaining Weierstrass
type theorems as corollaries of theorems analogous to Theorem 3.1 above)
is clearly useable for any approximation process whose side conditions are
amenable to ("invariant" under) convex linear combinations.
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