Restricted Range Approximation with Side Conditions

Darell J. Johnson*
New Mexico State University, Las Cruces, New Mexico 88003

Communicated by Oved Shisha
Received October 11, 1974

Let X be a compact subset of $[a, b]$, and let $C(X)$ denote the Banach space of all real-valued continuous functions defined on X. Let Π denote the set of polynomials in $C(X)$. Consider two extended real-valued functions ℓ and u defined on X which satisfy the following conditions.
(i) ℓ may take on the value $-\infty$, but never $+\infty$;
(ii) u may take on the value $+\infty$, but never $-\infty$;
(iii) there exist $\underline{\ell}, \underline{u}$ continuous on $[a, b]$ such that $\ell(x) \leqslant \underline{\ell}(x) \leqslant$ $\underline{u}(x) \leqslant u(x)$ for all $x \in X$.
(iv) the ℓ, \underline{u} of (iii) may be chosen so that $\underline{\ell}(x)=\underline{u}(x)$ at a finite number of points of $[a, b]$ only; and moreover,
(v) if $\underline{\ell}(y)=\underline{u}(y)$, then there exist constants $\xi, \xi^{\prime}, \eta, \psi$ (with $\eta>0$, $\xi \neq \xi^{\prime}$) and a positive integer α such that, for $x \in N_{n}(y)$,

$$
\begin{align*}
R(\psi, \underline{\ell}(x)-\underline{\ell}(y)) & \leqslant \xi^{\prime}(x-y)^{\alpha} \leqslant \xi(x-y)^{\alpha} \tag{1}\\
& \leqslant R(\psi, \underline{u}(x)-\underline{u}(y))
\end{align*}
$$

where $R(\psi, \cdot)$ rotates the (x, u)-plane by an angle ψ at the point $(y, \underline{\ell}(y)=$ $u(y))$.

Let $\Pi^{*}=\Pi^{*}(\ell, u)=\{p \in \Pi: l \leqslant p \leqslant u$ on $X\}$. We may now state the restricted range approximation scheme as follows.

Restricted Range Approximation Scheme. Given $f \in C(X)$, approximate f by polynomials $p \in \Pi^{*}$.

This approximation scheme has been considered by several authors (e.g., [1,4-8]). Between them the questions of existence, uniqueness, characterization, and nontriviality of best restricted range (polynomial) approxima-

[^0]tions have been considered, and some algorithms given. In this paper we consider the related

Restricted Range Approximation with Side Conditions Scheme. Given $f \in C(X)$ and bounded linear functionals $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$, approximate f by polynomials $p \in \Pi^{*}$ for which $x_{i}{ }^{*} p=x_{i}{ }^{*} f(i=1, \ldots, n)$.

We characterize those n-tuples of linear functionals for which one may approximate any continuous function f arbitrary closely in the restricted range approximation with side conditions (RRAS) scheme, for any permissible pair of bounding functions ℓ, u. For simplicity we will assume that $X=[a, b]$ below.

1. Preliminaries

In [1], conditions (i)-(v) are shown to be necessary and sufficient in order that the restricted range approximation (RRA) scheme is not trivial. Calling pairs of bounding functions ℓ, u satisfying conditions (i)-(v) permissible, we thus have

Proposition 1.1 [1]. Suppose $f \in C[a, b]$ and ℓ, u, permissible bounding functions, are such that $\ell \leqslant f \leqslant u$. Then given $\epsilon>0$, there exists a $p_{\epsilon} \in$ $\Pi^{*}(\ell, u)$ such that $\left\|f-p_{\epsilon}\right\|<\epsilon$.

Definition 1.1 [2]. Suppose $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ is a set of bounded linear functionalis for which no nontrivial linear combination $\sum_{i=1}^{n} a_{i} x_{i}^{*}$ is ever a positive linear functional on $C[a, b]$. Such sequences $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ are said to be span indefinite.

Proposition 1.2 [2]. Suppose $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ are span indefinite on $C[a, b]$. Then there exists a polynomial $p \in I I$ for whixh (i) $p(x) \geqslant 1$ on $[a, b]$ and (ii) $x_{j}{ }^{*} p=0(j=1, \ldots, n)$.

Remark 1.1. (a) Any bounded linear functional x^{*} on $C[a, b]$ has a unique decomposition into the difference of two positive linear functionals (called the positive and negative parts of x^{*});

$$
x^{*}=x^{x^{*}}-x^{-*}, \quad\left\|x^{*}\right\|=\left\|x^{+*}\right\|+\left\|x^{-*}\right\| .
$$

(b) A functional x^{*} is purely atomic in case the associated Borel measure [9, p. 34] is purely atomic.
(c) A functional y^{*} is perfect nowhere dense in case (i) supp y^{*} is the
countable union of perfect, nowhere dense subsets of $[a, b]$ having positive Lebesgue measure, and (ii) y^{*} has no atoms.
(d) A functional z^{*} is of purely continuum type in case (i) z^{*} has no atoms, and (ii) $\left\|z^{*} \circ \chi_{J}\right\|=0$ for every perfect, nowhere dense subset J of $[a, b]$.
(e) Any bounded linear functional x^{*} has a unique decomposition into the sum of a purely atomic, a perfect nowhere dense, and a purely continuum linear functional;

$$
x^{*}=w^{*}+y^{*}+z^{*},\left\|x^{*}\right\|=\left\|w^{*}\right\|+\left\|y^{*}\right\|+\left\|z^{*}\right\| .
$$

(f) If w^{*} is purely atomic and $t \in \operatorname{supp} w^{*}$, then t can have a zero weight only if t is a cluster point of (a countably infinite number of) atoms t_{i} of w^{*} having nonzero weights.

By the nodes of a pair of permissible bounding functions ℓ, u we mean the (finitely many) points t of $[a, b]$ for which $\ell(t)=u(t)$. We use $\operatorname{card}(T) \geqslant \mathbf{\aleph}_{0}$ to mean T has infinitely many points, and $N_{\delta}(T)$ for a δ-neighborhood of T.

2. RRAS Functionals

Definition 2.1. Suppose x^{*} is a bounded linear functional on $C[a, b]$ x^{*} is said to be a RRAS functional in case given $\epsilon>0, f \in C[a, b]$ and permissible ℓ, u for which $\ell \leqslant f \leqslant u$ on $[a, b]$ there necessarily exists a polynomial $p \in \Pi$ for which (i) $x^{*} p=x^{*} f$, (ii) $\ell \leqslant p \leqslant u$ on $[a, b]$, and (iii) $\|f-p\|<\epsilon$.

Theorem 2.1. A bounded linear functional x^{*} on $C[a, b]$ is a RRAS functional if and only if

$$
\begin{equation*}
\operatorname{card}\left(\operatorname{supp} x^{+*} \cap \operatorname{supp} x^{-*}\right) \geqslant \Sigma_{0} . \tag{1}
\end{equation*}
$$

Proof. Set $A=\operatorname{supp} x^{+*}, B=\operatorname{supp} x^{-*}$. If A and B are disjoint, consider $\ell(x)=-1=-u(x)$ and any $f \in C[a, b]$ for which $f(x)$ is one on $\operatorname{supp} x^{+*}$ and minus one on supp x^{-*}. Since f is extremal for x^{*} from $C[a, b]$, any $p \in \Pi,\|p\| \leqslant 1$ for which $x^{*} p=x^{*} f$ must be one on supp x^{+*} and minus one on supp x^{-*}. Since a nonconstant polynomial can attain its norm at most finitely often, either A and B both have finite cardinality or else one of A and B is empty. Suppose that $B=\varnothing$ but A is not finite. Let $t \in A$ be a cluster point of A and consider $u(x)=f(x)=-|x-t|, \ell(x) \equiv-\infty$. Since x^{*} is a positive linear functional, any $p \in \Pi$ for which $\ell \leqslant p \leqslant u$ and $x^{*} p=x^{*} f$ will have to equal f on A, and hence at t. But no such $p \in \Pi$ can
exist. Suppose that A and B are both nonempty finite point sets, $x^{*}=$ $\sum_{i=1}^{m} \alpha_{i} e_{s_{i}}$ for some nonzero constants α_{i} and distinct points $s_{i} \in[a, b]$. Without loss of generality suppose $\alpha_{1}<0$ and consider $\ell(x)=\left|x-s_{1}\right|=$ $u(x)-1$. Let f be any continuous function on $[a, b]$ for which $f\left(s_{i}\right)=t\left(s_{i}\right)$ if $\alpha_{i}<0, u\left(s_{i}\right)$ if $\alpha_{i}>0$. Again any polynomial $p \in \Pi$ for which $\ell \leqslant p \leqslant u$ and $x^{*} p=x^{*} f$ must interpolate f at the s_{i}. But no polynomial can simultaneously interpolate f at x_{1} and be inside the bounding functions ℓ, u.

Hence suppose $A \cap B=\left\{t_{1}, \ldots, t_{u}\right\}$ is a nonempty finite point set. By the definition of the positive and negative parts of a linear functional at least one of A and B has to be infinite. Consider bounding functions $\ell(x), u(x)$ which (i) are equal at each $t_{i}, \ell\left(t_{i}\right)=u\left(t_{i}\right)=0$, (ii) in some δ-neighborhood of each $t_{i}, \ell(x)$ coincides with the function - $\left|x-t_{i}\right|$, and $u(x)$ coincides with the function $2\left|x-t_{i}\right|$, (iii) are not equal if not at a $t_{i}, f(x)<0<u(x)$ if $x \notin A \cap B$, and (iv) are continuous on $[a, b]$. Choose a nonpolynomial (if possible) $f \in C[a, b]$ for which (i) $f\left(t_{i}\right)=0(i=1, \ldots, n)$, (ii) $f(x)=\ell(x)$ if $x \in B$, and (iii) $f(x)=u(x)$ if $x \in A$. By construction f is extremal for x^{*} from those continuous functions $g \in C[a, b]$ which lie within the bounding functions ℓ, u. Hence any $p \in \Pi$ for which $\ell \leqslant p \leqslant u$ and $x^{*} p=x^{*} f$ must (without loss of generality) equal $\ell(x)$ on A and $u(x)$ on B. Since A or B is infinite, any such polynomial is unique. Hence F can be approximated arbitrarily closely by such polynomials if and only if f is already a polynomial, in which case one of A and B must be a singleton (say A) and the other infinite. Now consider $\ell\left(t_{1}\right) \equiv 0, u(x)=f(x)$ any nonpolynomial for which $u\left(t_{1}\right)=0$ and ℓ, u are permissible. Any $p \in \Pi$ for which $\ell \leqslant p \leqslant u$ and $x^{*} p=x^{*} f$ is again uniquely determined, but this time f is not a polynomial,

Conversely, suppose $A \cap B$ is infinite.
Lemma 2.1. Suppose $F \in C[a, b]$. Suppose L, U are permissible bounding functions for which $L \leqslant F \leqslant U$. Then there exist $G, H \in C[a, b]$ such that $L \leqslant G, H \leqslant U$ and $x^{*} G<x^{*} F<x^{*} H$.

Suppose $f \in C[a, b]$ and permissible ℓ, u such that $\ell \leqslant f \leqslant u$ are fixed. For $\epsilon>0$ arbitrary, let

$$
\begin{aligned}
L_{\epsilon}(x) & =f(x)-\epsilon, & \text { if }(f-\ell)(x)>\epsilon U_{\epsilon}(x) & =f(x)+\epsilon, & & \text { if }(u-f)(x)>\epsilon \\
& =\ell(x), & & \text { otherwise: } & & =u(x),
\end{aligned} r \begin{array}{ll}
\text { otherwise } .
\end{array}
$$

At each node of $L_{\epsilon}, U_{\epsilon}$, we have $L_{\varepsilon}(x)=\ell(x), U_{\epsilon}(x)=u(x)$, so the pair $L_{\epsilon}, U_{\varepsilon}$ is permissible. By Lemma 2.1 there are $G_{\varepsilon}, H_{\epsilon} \in C[a, b]$ for which $L_{\epsilon} \leqslant G_{\epsilon}, H_{\epsilon} \leqslant U_{\epsilon}$, and $x^{*} G_{\epsilon}<x^{*} f<x^{*} H_{\epsilon}$. Let $\eta=\min \left\{x^{*}\left(H_{\epsilon}-f\right)\right.$, $\left.x^{*}\left(f-G_{\epsilon}\right)\right\}$. By Proposition 1.1 there are polynomials $p_{\epsilon}, q_{\epsilon}$ for which $L_{\epsilon} \leqslant p_{\epsilon}, q_{\epsilon} \leqslant U_{\epsilon},\left\|G_{\epsilon}-p_{\epsilon}\right\|<\eta\left\|x^{*}\right\|^{-1} / 2$, and $\left\|H_{\epsilon}-q_{\epsilon}\right\|<\eta\left\|x^{*}\right\|^{-1 / 2}$. Then $x^{*} \dot{p}_{\varepsilon}<x^{*} f<x^{*} q_{\epsilon}$, and choose $0<\lambda<1$ so that $x^{*}\left(\lambda p_{\epsilon}+(1-\right.$
$\left.\lambda) q_{\epsilon}\right)=x^{*} f$. Since $\ell \leqslant L_{\epsilon} \leqslant \lambda p_{\epsilon}+(1-\lambda) q_{\epsilon} \leqslant U_{\epsilon} \leqslant u$, also $\| f-\left(\lambda p_{\epsilon}+\right.$ $\left.(1-\lambda) q_{\epsilon}\right) \|<\epsilon$ and the proof is complete.

Proof (of Lemma 2.1). Since L, U are permissible, $T=\{x \in[a, b]$: $L(x)=U(x)\}$ contains at most a finite number of points. Since $A \cap B$ is infinite, $C=(A \cap B) \backslash T$ is then also infinite. Consider the decomposition of Remark 1.1 for x^{*};

$$
\begin{align*}
& x^{+*}=w^{+*}+y^{+*}+z^{+*} \\
& x^{-*}=w^{-*}+y^{-*}+z^{-*} \tag{2}
\end{align*}
$$

Case I. Suppose $t \in C \cap \operatorname{supp} w^{-*}$. If t should be an isolated point of supp x^{-*}, then not only does the atom e_{t} have some positive weight α in w^{-*} but there even exists an $\epsilon>0$ for which $x_{\epsilon}^{-*}=x^{-*} \circ \chi_{(t-\epsilon, t+\epsilon)}=\alpha e_{t}$. Since $\left.t \neq \operatorname{supp} w^{+*},\left\|x_{\epsilon}^{+*}\right\|=\| x^{+*} \circ \chi_{(t-\epsilon, t+\xi}\right) \| \rightarrow 0$ as $\epsilon \rightarrow 0^{+}$. Hence there is an $\eta>0$ for which $\left\|x_{\epsilon}^{+*}\right\|<\left\|x_{\epsilon}^{-*}\right\|=\alpha$ whenever $0<\epsilon<\eta$.

Since $t \in C$, let $0<\psi<\eta$ be such that $\ell(x)<u(x)$ whenever $x \in(t-\psi$, $t+\psi)$. For $0<\epsilon<\psi$ choose $g_{\epsilon}, h_{\epsilon} \in C[a, b]$ so that
(i) $g_{\epsilon}(t)=f(t)+(u(t)-f(t)) / 2$,
(ii) $g_{\epsilon}(x)=f(x)$ if $x \in[a, b] \backslash N_{n}(t)$, and
(iii) $f(x) \leqslant g_{\epsilon}(x) \leqslant u(x)$ otherwise, while
(iv) $h_{\epsilon}(t)=f(t)-(f(t)-\ell(t)) / 2$,
(v) $h_{\epsilon}(x)=f(x)$ if $x \in[a, b] \backslash N_{\eta}(t)$, and
(vi) $\ell(x) \leqslant h_{\epsilon}(x) \leqslant u(x)$ otherwise.

As $\epsilon \rightarrow 0^{+}, x^{*} g \rightarrow x^{*} f-(u-f)(t) / 2, \quad x^{*} h_{\epsilon} \rightarrow x^{*} f+(f-\ell)(t) / 2$, and $x^{*} g_{\epsilon}, x^{*} h_{\varepsilon}$ are continuous functions of epsilon. If $u(t)>f(t)$, upon choosing $\epsilon>0$ sufficiently small the desired G of Lemma 2.1 has been found (similarly for H if $f(t)>\ell(t))$. Since $t \in T$ at least one of the above two cases hold: suppose $f(t)<u(t)$ but that $f(t)=\ell(t)$. Considering $0<\tau<\epsilon<\psi$, choose $h_{\varepsilon, \tau} \in C[a, b]$ so that (i) $h_{\varepsilon, \tau}(x)=f(x)$ if $x \in N_{\tau}(t) \cup\left([a, b] \backslash N_{\epsilon}(t)\right)$, (ii) $h_{\epsilon, \tau}(x)=f(x)+(u-f)(x) / 2$ if $x=t+(\psi+\eta) / 2$, and (iii) $\ell(x) \leqslant$ $h_{\epsilon, \tau}(x) \leqslant f(x)$ otherwise.

Since $t \in A \cap B, x^{+*} \circ \chi_{(t-\epsilon, t-\tau)} \cup{ }_{(t+\tau, t+\epsilon)}$ is not the zero functional (for $0<\tau<\epsilon$ sufficiently small). In particular we can fix $0<\tau<\epsilon<\psi$ sufficiently small that $x^{+*} h_{\varepsilon, \tau}>0$. But then $x^{-*} h_{\epsilon, \tau}=0$ implies $x^{*} h_{\varepsilon, \tau}>x^{*} f$ and $h_{\epsilon, \tau}$ is our desired H.

If t is not an isolated point of $\operatorname{supp} x^{-*}$ but still has a positive weight α in w^{-*} a similar construction can be made. For $t \in \operatorname{supp} y^{-*} \mid \operatorname{supp} z^{-*}$ set $D=[a, b] \backslash \operatorname{supp} y^{-*}$. Since supp y^{-*} is the union of countably many perfect nowhere dense subsets of $[a, b], D$ is dense in $[a, b]$. If supp y^{-*} is actually a finite union of perfect nowhere dense subsets of $[a, b]$, then D is also open
and we can obtain G, H by modifying f on $N_{\epsilon}(t) \cap E$ and $\left(N_{\epsilon}(t) \backslash N_{\tau}(t)\right) \cap E$ for some closed subset E of E. If $\operatorname{supp} y^{* *}$ is not a finite union of perfect nowhere dense subsets of $[a, b]$, suppose $y^{-*}=\sum_{i=1}^{\infty} \beta_{i} \int_{\Gamma_{i}} \cdot d \mu_{i}$, where Γ_{i} is perfect nowhere dense of positive Lebesgue measure, $\beta_{i}>0$, and μ_{i} has total mass one. Since $\sum_{i=1}^{\infty} \beta_{i}=\left\|y^{-*}\right\|<\infty, \sum_{i=\nu}^{\infty} \beta_{i} \rightarrow 0$ as $\nu \rightarrow \infty$, and hence $\left\|\sum_{i=\nu}^{\infty} \beta_{i} \int_{\Gamma_{i}} \cdot d \mu_{i}\right\| \rightarrow 0$ as $\nu \rightarrow \infty$, it is possible to ignore all but finitely many terms of y^{-*} with a negligible change in x^{-*}. Hence the above construction can again be carried out.

For $t \in \operatorname{supp} z^{-*} \mid \operatorname{supp} z^{+*}$, for $\epsilon>0$ sufficiently small z^{+*} and w^{+*} are the zero functional and x^{+*} reduces to y^{+*}. Let $\left\{D_{\xi}\right\}_{\epsilon>0}$ be a decreasing sequence of open subsets of $[a, b] \backslash\{t\}$ whose limit (intersection) is a proper subset of supp y^{+*} having positive measure and not containing t. In particular, then, $\left\|x^{-*} \circ \chi_{D_{\xi}}\right\| \rightarrow 0$ as $\epsilon \rightarrow 0^{+}$but $\left\|x^{+*} \circ \chi_{D_{\xi}}\right\| \rightarrow \beta>0$ for some positive constant β. Letting E_{ξ} be nonempty closed subsets of D_{ξ} having positive measure, we can choose $\xi>0$ sufficiently small so that z^{-*} makes a negligible contribution to $x^{*} \circ \chi_{E_{\xi}}$, and the analogous construction of G, H will work.

If $t \in \operatorname{supp} w^{*}$ does not have a positive weight, then being a limit of atoms of $w^{* *}$ having positive weight, choose an atom t^{\prime} of w^{-*} having positive weight which will also lie in C.

Case 1I. $t \in \operatorname{supp} z^{+*} \mid \operatorname{supp} w^{*}$. If $t \in \operatorname{supp} z^{-*}$ also, then (locally at t) $\operatorname{supp} z_{\epsilon}^{+*}=[t-\epsilon, t]$ and $\operatorname{supp} z_{\epsilon}^{-*}=[t, t+\epsilon]$ or vice versa (provided $\epsilon>0$ is sufficiently small). To construct G, increase f on $[t, t+\epsilon]$ only: for H increase f on $[t-\epsilon, t]$ only). If $y_{\epsilon}{ }^{*}=w_{\epsilon}^{*}=0$ would be done. But $t \notin \operatorname{supp} w^{*}$ means $w_{\epsilon}^{*}=0$ if ϵ is sufficiently small, and if $y_{\epsilon}^{*} \neq 0$ for all $\epsilon>0$, let $D=[a, b] \mid \operatorname{supp} y_{\epsilon}{ }^{*}$ (if supp $y_{\epsilon}{ }^{*}$ is a finite union of perfect nowhere dense sets) and modify f on $E \cap[t, t+\epsilon]$ and $E \cap[t-\epsilon, t], E$ being some appropriate closed subset of D as above. If supp $y_{\epsilon}{ }^{*}$ is not a finite union, use the same approach of considering only finitely many of the infinite terms of $y_{\epsilon} *$ that was used above in Case I.

Thus suppose $t \notin \operatorname{supp} z^{-*}$. But then $t \in \operatorname{supp} x^{+*}$ implies $t \in \operatorname{supp} y^{-*}$ and for epsilon sufficiently small $x_{\epsilon}^{-*}=y_{\epsilon}^{-*}$. Construct G, H by using the D and $\left\{D_{\xi}\right\}_{\xi>0}$ approach as in Case I.

Case TI. $t \notin \operatorname{supp}\left(w^{*}+z^{*}\right)$. Since $t \in A \cap B, t \in \operatorname{supp} y^{+*} \cap \operatorname{supp} y^{-*}$. Let $D=[a, b] \backslash \operatorname{supp} y^{+*}, \quad E=[a, b] \operatorname{supp} y^{-*}$. Since $\left\|y^{*}\right\|=\left\|y^{+*}\right\|+$ $\left\|y^{-*}\right\|, D$ contains all of supp y^{-*} except for a set of measure zero (similarly for E and supp y^{+*}). Letting D^{\prime}, E^{\prime} be closed compact subsets of supp y^{-*}, supp y^{+*}, contained in D and E, and of positive measure, we can find disjoint open neighborhoods $E^{\prime \prime}, E^{\prime \prime}$ of D^{\prime}, E^{\prime} and construct our functions G, H by modifying f on D^{\prime}, E^{\prime}, respectively,

Corolaty 2.1. If x^{*} is $a \operatorname{RRAS}$ functional, $f \in \mathbb{C}[a, b]$ and ℓ, u permis-
sible bounding functions such that $\ell \leqslant f \leqslant u$ on $[a, b]$, then there exists a $v>0$ such that given $|\eta|<\nu$ there exists a polynomial p_{n} for which $\ell \leqslant$ $p_{\eta} \leqslant u$ and $x^{*} p_{\eta}=x^{*} f+\eta$.

3. RRAS SEQUENCES

Definition 3.1. A sequence of bounded linear functionals $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ is said to be a $R R A S$ sequence in case any nonzero $x^{*} \in\left\langle x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right\rangle$ is a RRAS functional.

Below we will show that one may approximate any $f \in C[a, b]$ arbitrarily closely in the RRAS scheme. Considering this eventuality, we first look at some properties of RRAS sequences.

Proposition 3.1. Suppose $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ is $a \operatorname{RRAS}$ sequence on $C[a, b]$. Let $S=\left\{s_{1}, \ldots, s_{m}\right\}$ be a finite subset of $[a, b]$. Set $v_{i}{ }^{*}=x_{i}{ }^{*} \circ \chi_{D}, D=$ $[a, b] \backslash S$. Then $v_{1}{ }^{*}, \ldots, v_{n}{ }^{*}$ is also a RRAS sequence on $C[a, b]$.

Remark 3.1. If $S_{\delta}=N_{\delta}(S), D_{\delta}=[a, b] \backslash S_{\delta}$, and $v_{i, \delta}^{*}=x_{i}{ }^{*} \circ \chi_{D_{\delta}}$, it is not the case that $x_{1}{ }^{*}, \ldots, x_{n}^{*}$ a RRAS sequence on $C[a, b]$ and S a finite subset of $[a, b]$ implies there is a $\delta>0$ sufficiently small in order that $v_{1, \delta}^{*}, \ldots$, $v_{n, \delta}^{*}$ is necessarily a RRAS sequence. As a counterexample consider the following;

EXAMPLE 3.1. $n=1, x_{1}^{*}=x_{n}^{*}=x^{*}=\int_{0}^{1} \cdot d x-\sum_{j=1}^{\infty} 2^{-j} e_{2-j} . x^{*}$ is a RRAS functional, $v^{*}=x^{*} \circ \chi_{(0,1]}$ is a RRAS functional, but $v^{*}=\int_{\delta}^{1} \cdot f x-$ $\sum_{j=1}^{[-1 n \delta]} 2^{-j} e_{2^{-j}}$ has supp $v_{\delta}^{+*} \cap \operatorname{supp} v_{\delta}^{-*}=\left\{2^{-1}, \ldots, 2^{-[-\ln \delta]}\right\}$, a finite point set only, and so by Theorem $2.1 v_{\delta} *$ is not a RRAS functional, for any $\delta>0$.

Proposition 3.2. Suppose $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ is a linearly independent RRAS sequence on $C[a, b]$. Let $S=\left\{s_{1}, \ldots, s_{m}\right\}$ be a finite subset of $[a, b]$. Set $v_{i}{ }^{*}=$ $x_{i}{ }^{*} \circ \chi_{D}, D=[a, b] \backslash S$. Then $v_{1}{ }^{*}, \ldots, v_{n}{ }^{*}$ is also a linearly independent RRAS sequence on $C[a, b]$.

Corollary 3.1. If $S_{\delta}=N_{\delta}(S), D_{\delta}=[a, b] \mid S_{\delta}$, and $v_{i, \delta}^{*}=x_{i}^{*} \circ \chi_{D_{\delta}}$, then $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ a linearly independent RRAS sequence on $C[a, b]$ and $S a$ finite subset of $[a, b]$ implies there exists $a \delta_{0}>0$ such that $v_{1, \delta}^{*}, \ldots, v_{n, \delta}^{*}$ is a linearly independent span indefinite sequence whenever $0 \leqslant \delta \leqslant \delta_{0}$.

Proof. If $v_{1, \delta}^{*}, \ldots, v_{n, \delta}^{*}$ is not span indefinite for any $\delta>0$, let $v_{o}^{*}=$ $\sum_{i=1}^{n} \alpha_{i, \delta} v_{i, \delta}^{*}$ be a nonzero positive linear functional on $C[a, b]$. If $\delta^{\prime}<\delta^{\prime \prime}$, $v_{\delta^{\prime \prime}}^{*}=v_{\delta^{\prime}}^{*} \circ \chi_{D_{\delta^{\prime \prime}}}=\sum_{i=1}^{n} \alpha_{i, \delta^{\prime \prime}} v_{i, \delta^{\prime \prime}}^{*}$ must also be a positive linear functional. Since $\operatorname{supp} x^{+*} \cap \operatorname{supp} x^{-*}$ is infinite for any nonzero $x^{*} \in\left\langle x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right\rangle$, for each such positive linear functional $v_{\delta}{ }^{*}$ there must be a $\delta^{\prime}<\delta$ for which
$v_{\delta^{\prime}}^{*}$ is not a positive linear functional. Thus given $\delta<0$ arbitrarily small, there exist infinitely many $\left\{\alpha_{i, v}\right\}_{v>0}$ such that $v_{v}{ }^{*}=\sum_{i=1}^{n} \alpha_{i, p} v_{i, \delta}^{*}$ are positive linear functionals on $C[a, b]$, and these $v_{\nu}{ }^{*}$ generate a nonzero subspace V_{s} contained in $V_{\delta^{\prime}}$ whenever $\delta<\delta^{\prime}$. But $\operatorname{dim}\left\langle v_{1}{ }^{*}, \ldots, v_{n}{ }^{*}\right\rangle=n<\infty$, so $\cap_{\delta>0} V_{\delta}$ is also a nonzero subspace V of $\left\langle v_{1}{ }^{*}, \ldots, v_{n}{ }^{*}\right\rangle$. But then some basis of V must consist entirely of positive linear functionals, and so $v_{1}{ }^{*}, \ldots, v_{n}{ }^{*}$ cannot be a linearly independent RRAS sequence on $C[a, b]$.

Remark 3.2. If one finds it difficult to see why the V above must have a basis consisting of positive linear functionals, replace the V_{δ} of the above proof by positive cones W_{δ} consisting entirely of positive linear functionals. As above $W_{\delta} \supseteq W_{\delta^{\prime}}$ whenever $\delta^{\prime}<\delta$ and no W_{δ} is the zero cone (recall that if u^{*}, v^{*} are linearly independent positive linear functionals, and if there exist countably many distinct positive linear functionals in the positive cone spanned by u^{*} and v^{*} which do not all lie in finitely many one-dimensional subspaces of $\left\langle u^{*}, v^{*}\right\rangle$, then the positive cone spanned by u^{*}, v^{*} consists entirely of positive linear functionals).

Proposition 3.3. Suppose x^{*} is a RRAS functional on $C[a, b]$. Let $v^{*}=x^{*} \circ \chi_{B}, B$ an open subset of $[a, b]$. Suppose v^{*} is also a RRAS functional on $C[a, b]$. Then there exists a closed subset E of B such that $u^{*}=$ $v^{*} \circ \chi_{E}=x^{*} \circ \chi_{E}$ is a (span) indefinite linear functional on $C[a, b]$.

Proposition 3.4. Suppose $x_{1}{ }^{*}, \ldots, x_{n} *$ is a linearly independent RRAS sequence on $C[a, b]$. Let $v_{i}{ }^{*}=x_{i}{ }^{*} \circ \chi_{B}, B$ an open subset of $[a, b]$. Suppose $v_{1}{ }^{*}, \ldots, v_{n}{ }^{*}$ are also a RRAS sequence on $C[a, b]$. Then there exists a closed subset E of B such that $u_{1}{ }^{*}, \ldots, u_{n}{ }^{*}$ are span indefinite on $C[a, b]$, where $u_{i}^{*}=$ $v_{i}{ }^{*} \circ \chi_{E}=x_{i}{ }^{*} \circ \chi_{E}$.

Proof. By Proposition 3.3 there is a closed subset E^{\prime} of B for which $v_{n}{ }^{*} \circ \chi_{E^{\prime}}$ is an indefinite linear functional. By induction there is a closed
 span indefinite $(i=0, \ldots, n)$. Let $E^{\prime \prime \prime}=E^{\prime} \cup E^{\prime \prime}$ and set $u_{i}^{*}=v_{i}^{*} \circ \chi_{E^{\prime \prime \prime}}$, If $u_{1}^{*}, \ldots, u_{n}^{*}$ is not span indefinite on $C[a, b]$, then some $\left(\sum_{i=1}^{n-1} \beta_{i} u_{i}{ }^{*}\right)+u_{n} *$ is a (without loss of generality) positive linear functional on $C[a, b]$. Since supp $u_{n}^{*} \cap \operatorname{supp} u_{n}^{+*}$ is nonempty, necessarily
(i) $\left(\sum_{i=1}^{n-1} \beta_{i} u_{i}^{*}\right)^{+}=u_{n}^{-*}+a^{*}$ for some positive linear functional a^{*} on $C[a, b]$, and
(ii) $u^{+*}=\left(\sum_{i=1}^{n-1} \beta_{i} u_{i}\right)^{-}+b^{*}$ for some positive linear functional b^{*} on $C[a, b]$.

Since $u_{1}{ }^{*}, \ldots, u_{n-2}^{*}, u_{n}{ }^{*}$ are span indefinite, fixing $\beta_{1}, \ldots, \beta_{n-2}$ we find at most two values of β_{n-1} can be such that $\sum_{i=1}^{n-1} \beta_{i} u_{i}^{*}+u_{n}^{*}$ is not indefinite.

Fixing $\beta_{1}, \ldots, \beta_{n-3}, \beta_{n-1}$ we likewise find at most two values of β_{n-2}. For each of those values of β_{n-2}, fixing $\beta_{1}, \ldots, \beta_{n-3}$ as before we find at most two values of β_{n-1} (for a total of four). In this way at most finitely many $u^{*} \in$ $\left\langle u_{1}^{*}, \ldots, u_{n-1}^{*}\right\rangle$ are such that $u^{*}+u_{n}^{*}$ can fail to be indefinite. For each of them we can choose closed subsets E_{j} of B for which $\left(u^{*}+u_{n}{ }^{*}\right) \circ \chi_{E_{j}}$ is indefinite, and thus overall setting $E=E^{\prime \prime \prime} \cup\left(\cup_{j} B_{j}\right)$ we find that the induced $u_{i}{ }^{*}=v_{i}{ }^{*} \circ \chi_{E}$ are span indefinite on $C[a, b]$.

Remark 3.3. Perhaps a more intuitive proof to Proposition 3.4 above is to simply pick a closed subset E of B containing enough atoms of each $v_{i}{ }^{*}$ in its interior to render the induced linear functionals $u_{i}{ }^{*}$ linearly independent. Since without loss of generality each $v_{i}{ }^{*}$ will have atoms the others lack, choosing E to contain the proper atoms in its interior will not only render the induced $u_{i}{ }^{*}$ linearly independent but also span indefinite, for each u_{i}^{*} will contain atoms lying in supp $u_{i}^{+*} \cap \operatorname{supp} u_{i}^{-*}$ which will not be atoms of any $u_{j}{ }^{*}(j \neq i)$ and hence cannot disappear in any linear combination of the $u_{i}{ }^{*}$ without taking a zero coefficient.

We generalize Lemma 2.1 next.

Lemma 3.1. If $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ is a linearly independent RRAS sequence on $C[a, b], f \in C[a, b]$ and ℓ, u permissible bounding functions such that $\ell \leqslant$ $f \leqslant u[a, b]$, then there exists $a \nu>0$ such that given $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in$ $\{-1,1\}^{n}$ there exists a continuous function j for which both
(i) $\ell \leqslant h_{\sigma} \leqslant u$ on $[a, b]$, and (ii) $\sigma_{j} x_{j}^{*}\left(h_{\sigma}-f\right)>\nu(j=1, \ldots, n)$.

Proof. Set $A=\{x \in[\mathrm{a}, b]: f(x)=\ell(x)\}, \quad B=\{x \in[a, b]: \ell(x)<f(x)<$ $u(x)\}, \quad C=\{x \in[a, b]: f(x)=u(x)\} ; D=A \cup C, \quad T=\{x \in[a, b]: \ell(x)=$ $u(x)\}=A \cap C, r_{i}{ }^{*}=x_{i}{ }^{*} \circ \chi_{B}$. Suppose $r_{1}{ }^{*}, \ldots, r_{\mu}{ }^{*}$ is a maximal linearly independent RRAS sequence among the $r_{1}{ }^{*}, \ldots, r_{n}{ }^{*}, 0 \leqslant \mu \leqslant n$. By Proposition 3.4 let E be a closed subset of B for which $r_{1}{ }^{*}, \ldots, r_{\mu}{ }^{*}$ is a (linearly independent) span indefinite sequence on $C[a, b]$. By Corollary 3.1 let $\delta>0$ be such that $x_{1}{ }^{*} \circ \chi_{H}, \ldots, x_{n}{ }^{*} \circ \chi_{H}$ is a (linearly independent) span indefinite sequence of linear functionals on $C[a, b]$, where $H=[a, b] \backslash N_{\delta}(T)$. Since T and E are disjoint closed subsets of $[a, b]$, suppose that $\delta>0$ is sufficiently small such that H contains E in its interior (normality of the interval $[a, b])$. Set $s_{i}^{*}=x_{i}^{*} \circ \chi_{I}, \quad I=(H \cap D) \cup E$, and $\psi=\left(\frac{1}{2}\right) \mathrm{min}$ $\{\min \{(u-\ell)(x): x \in H \cap D\}, \min \{(u-f)(x): x \in E\}, \min \{(f-\ell)(x): x \in E\}\}$. By separately analyzing the $x_{1}{ }^{*}, \ldots, x_{\mu}^{*}$ and the $x_{\mu+1}^{*}, \ldots, x_{n}{ }^{*}$ we observe that the $s_{1}{ }^{*}, \ldots, s_{n}{ }^{*}$ may be assumed to be a (linearly independent) span indefinite sequence on $C[a, b]$. Writing each functional as $s_{i}^{*}=s_{i}^{*} \circ \chi_{A \cap H}+s_{i}^{*} \circ$ $\chi_{C \cap H}+s_{i}^{*} \circ \chi_{E}$, defining $t_{i}^{*}=s_{i}^{*} \circ \chi_{A \cap H}-s_{i}^{*} \circ \chi_{C \cap H}+s_{i}^{*} \circ \chi_{E}$ we have that $t_{i}{ }^{*}, \ldots, t_{n}{ }^{*}$ is also a (linearly independent) span indefinite sequence on $C[a, b]$.

By linear independence choose $p_{i, \iota} \in C[a, b](i=1, \ldots, n: \iota=-1,1)$ so that $s_{j}^{*} p_{i, 4}=t \delta_{i j}$. By span indefiniteness (Proposition 1.2) choose $k^{\prime} \in$ $C[a, b]$ so that (i) $k^{\prime} \geqslant 1$ on $[a, b]$, and (ii) $t_{j} * k^{\prime}=0(j=1, \ldots, n)$. Since $A \cap H, C \cap H, E$ are mutually disjoint compact subsets of $[a, b]$ whose union contains the support of all the $s_{k}{ }^{*}$ and $t_{j}{ }^{*}$, choose a $k \in C[a, b]$ so that (i) $k(x)=-k^{\prime}(x)$ if $x \in C \cap H$, (ii) $k(x)=k^{\prime}(x)$ if $x \in(A \cap H) \cup E$, and (iii) $\|k\|=\left\|k^{\prime}\right\|$. Since $s_{j}^{*} k=t_{j}{ }^{*} k^{\prime}$ and ψ is positive, setting $q_{i, 6}=\alpha\left(p_{i, 6}+\right.$ βk) we may choose positive constants α and β so that (i) $0<q_{i, 4}(x) \leqslant \psi$ for $x \in A \cap H$, (ii) $-\psi \leqslant q_{i, 6}(x)<0$ for $x \in C \cap H$, (iii) $-\psi \leqslant q_{i, 4}(x) \leqslant \psi$ for $x \in E$, (iv) $s_{j}^{*} p_{i, \iota}=0$ if $j \neq i$, and (v) $\iota s_{i}^{*} p_{i, \iota}>0$. Set $\nu=(2 n)^{-1} \min$ $\left\{\left|x_{3}^{*}\left(q_{i, t}\right)\right|: i=1, \ldots, n\right.$ and $\left.i=-1,1\right\}$. Consider the permissible bounding functions $U(x)=u(x)-f(x), L(x)=\ell(x)-f(x)$. Observe that (i) L, U has the same nodes as ℓ, u (the set T), (ii) $L(x)=0$ and $2 \psi \leqslant U(x)$ for $x \in$ $A \cap H$, (iii) $L(x) \leqslant-2 \psi$ and $U(x)=0$ for $x \in C \cap H$, and (iv) $L(x) \leqslant-2 \psi<$ $0<2 \psi \leqslant U(x)$ for $x \in E$. Since $L(x)<q_{i,(}(x)<U(x)$ for $x \in I$ a compact subset of $[a, b]$, and $L(x) \leqslant 0 \leqslant U(x)$ globally on $[a, b]$, for $\eta>0$ sufficiently small we can find continuous functions $h_{i, \iota, \eta}$ so that (i) $h_{i, \iota, \eta}(x)=q_{i, t}(x)$ in $x \in I$, (ii) $h_{i_{i, n}}(x)=0$ if $\operatorname{dist}(x, I) \geqslant \eta$, and (iii) $L(x) \leqslant h_{i_{s}, \eta}(x) \leqslant U(x)$ otherwise. Since $J_{n}=\{x \in[a, b]$: dist $(x, I)<\eta\}$ is a decreasing sequence of open subsets of $[a, b]$ whose limit (intersection) is $I, x_{j}^{*} h_{i, i, \eta} \rightarrow s_{j}^{*} h_{i, i, \eta}$ as $\eta \rightarrow 0$. Fix $\eta>0$ so that $\left|\left(x_{j}^{*}-s_{j}^{*}\right) h_{i, \iota, \eta}\right|<n^{-1} \cdot 10^{-6} \nu$ uniformly in i and t and set $h_{\sigma}=n^{-1} \sum_{i=1}^{n} h_{i, \sigma_{i}, n}$. Then $L \leqslant h_{\sigma} \leqslant U$ and $x_{j}{ }^{*} h_{\sigma}=n^{-1}\left(x_{j} * h_{i, c_{j}, n}\right)$ $+n^{-1} \sum_{i=1, i \neq j}^{n} x_{j}^{*} h_{i, \sigma_{i}, \eta}$. Since the last term has magnitude at most $10^{-6} v$ while the first term has magnitude at least 2ν, with sign σ_{j}, we find $\sigma_{j} x_{j} * h_{\sigma}>\nu(j=1, \ldots, n)$ and the conclusion of the lemma follows.

Theorem 3.1. Suppose $x_{1}{ }^{*}, \ldots, x_{n}$ * is a RRAS sequence of linear functionals on $C[a, b]$. Then given $f \in C[a, b]$ and permissible ℓ, u for which $\ell \leqslant$ $f \leqslant u$ there necessarily exists a polynomial $p \in \Pi$ for which $\ell \leqslant p \leqslant u$ and $x_{i}{ }^{*} p=x_{i}{ }^{*} f(i=1, \ldots, n)$.

Proof. Without loss of generality suppose the $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ are linearly independent on $C[a, b]$. Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in\{-1,1\}^{n}$ be arbitrary. Set $\tau=\left(\sigma_{1}, \ldots, \sigma_{n-1},-\sigma_{n}\right)$ and choose continuous functions h_{σ}, h_{τ} by Lemma 3.1. By Proposition 1.2, we may find polynomials p_{σ}, p_{τ} for which $\ell \leqslant p_{c}$ $p_{\tau} \leqslant u$ and $\sigma_{j} x_{j}{ }^{*}\left(p_{\sigma}-f\right)>\nu, \tau_{j} x_{j}{ }^{*} p_{\tau}>v(j=1, \ldots, n)$. Let $0<\lambda<1$ be such that $x_{n}{ }^{*}\left(\lambda p_{\sigma}+(1-\lambda) p_{\tau}-f\right)=0$ and set $p_{\sigma}{ }^{\prime}=\lambda p_{\sigma}+(1-\lambda) p_{\tau}$. Then (i) $\ell \leqslant p_{\sigma}{ }^{\prime} \leqslant u$, (ii) $x_{n}{ }^{*}\left(p_{\sigma}{ }^{\prime}-f\right)=0$, (iii) $\sigma_{j} x_{j}{ }^{*}\left(p_{\sigma}{ }^{\prime}-f\right)>v(j=1$, $\ldots, n-1)$, and (iv) $\left(\sigma_{1}, \ldots, \sigma_{n-1}\right) \in\{-1,1\}^{n-1}$ is arbitrary. By induction there is a polynomial $p \in \Pi$ for which $\ell \leqslant p \leqslant u$ and $x_{j}^{*}(p-f)=0(j=1$; \ldots, n) 目

Corollary 3.2. Suppose $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ is a RRAS sequence of invear
functionals on $C[a, b]$. Then given $f \in C[a, b]$, permissible ℓ, u for which $\ell \leqslant f \leqslant u$, and $\epsilon>0$ arbitrary there necessarily exists a polynomial $p \in \Pi$ for which (i) $\ell \leqslant p \leqslant u$, (ii) $x_{j}{ }^{*} p=x_{j}{ }^{*} f(j=1, \ldots, n)$, and (iii) $\|f-p\| \leqslant \epsilon$.

Remark 3.4. Corollary 3.2 is our desired Weierstrass theorem for RRAS approximation with arbitrary permissible bounding functions. Notice the manner we have derived our Weierstrass theorem as a corollary of Theorem 3.1 parallels the derivation of the Weierstrass-type theorem Proposition 1.2 in [1] as a corollary to a theorem (Proposition 1.1) similar in statement to Theorem 3.1 above. Such an approach (obtaining Weierstrasstype theorems as corollaries of theorems analogous to Theorem 3.1 above) is clearly useable for any approximation process whose side conditions are amenable to ("invariant" under) convex linear combinations.

References

1. D. J. Johnson, On the nontriviality of restricted range polynomial approximation, SIAM J. Numer. Anal. 12 (1975).
2. D. J. Johnson, One-sided approximation with side conditions, J. Approximation Theory 16 (1976), 366-371.
3. D. J. Johnson, SAIN approximation in C[a, b], J. Approximation Theory 17 (1976), 14-34.
4. L. L. Schumaker and G. D. Taylor, On approximation by polynomials having restricted ranges. II, SIAM J. Numer. Anal. 6 (1969), 31-36.
5. G. D. Taylor, On approximation by polynomials having restricted ranges, SIAM J. Numer. Anal. 5 (1968), 258-268.
6. G. D. Taylor, Approximation by functions having restricted ranges III, J. Math. Anal. Appl. 27 (1969), 241-248.
7. G. D. Taylor, Approximation by functions having restricted ranges: Equality case, Numer. Math. 14 (1969), 71-78.
8. G. D. Taylor and M. J. Winter, Calculation of best restricted approximations, SIAM J. Numer. Anal. 7 (1970), 248-255.
9. W. Rudin, "Real and Complex Analysis," McGraw-Hill, New York, 1966.

[^0]: * Research supported by National Science Foundation Grant No. GP-22928.

