Restricted Range Approximation with Side Conditions

DARELL J. JOHNSON*

New Mexico State University, Las Cruces, New Mexico 88003

Communicated by Oved Shisha Received October 11, 1974

Let X be a compact subset of [a, b], and let C(X) denote the Banach space of all real-valued continuous functions defined on X. Let Π denote the set of polynomials in C(X). Consider two extended real-valued functions ℓ and udefined on X which satisfy the following conditions.

(i) ℓ may take on the value $-\infty$, but never $+\infty$;

(ii) *u* may take on the value $+\infty$, but never $-\infty$;

(iii) there exist $\underline{\ell}, \underline{u}$ continuous on [a, b] such that $\ell(x) \leq \underline{\ell}(x) \leq \underline{u}(x) \leq u(x)$ for all $x \in X$.

(iv) the $\underline{\ell}, \underline{u}$ of (iii) may be chosen so that $\underline{\ell}(x) = \underline{u}(x)$ at a finite number of points of [a, b] only; and moreover,

(v) if $\underline{\ell}(y) = \underline{u}(y)$, then there exist constants ξ, ξ', η, ψ (with $\eta > 0$, $\xi \neq \xi'$) and a positive integer α such that, for $x \in N_{\eta}(y)$,

$$R(\psi, \underline{\ell}(x) - \underline{\ell}(y)) \leq \xi'(x - y)^{\alpha} \leq \xi(x - y)^{\alpha}$$

$$\leq R(\psi, \underline{u}(x) - \underline{u}(y)),$$
(1)

where $R(\psi, \cdot)$ rotates the (x, u)-plane by an angle ψ at the point $(y, \ell(y) = \underline{u}(y))$.

Let $\Pi^* = \Pi^*(\ell, u) = \{ p \in \Pi : l \leq p \leq u \text{ on } X \}$. We may now state the restricted range approximation scheme as follows.

RESTRICTED RANGE APPROXIMATION SCHEME. Given $f \in C(X)$, approximate f by polynomials $p \in \Pi^*$.

This approximation scheme has been considered by several authors (e.g., [1, 4-8]). Between them the questions of existence, uniqueness, characterization, and nontriviality of best restricted range (polynomial) approxima-

* Research supported by National Science Foundation Grant No. GP-22928.

tions have been considered, and some algorithms given. In this paper we consider the related

Restricted Range Approximation with Side Conditions Scheme. Given $f \in C(X)$ and bounded linear functionals $x_1^*, ..., x_n^*$, approximate f by polynomials $p \in \Pi^*$ for which $x_i^* p = x_i^* f$ (i = 1, ..., n).

We characterize those *n*-tuples of linear functionals for which one may approximate any continuous function f arbitrary closely in the restricted range approximation with side conditions (RRAS) scheme, for any permissible pair of bounding functions ℓ , u. For simplicity we will assume that X = [a, b] below.

1. PRELIMINARIES

In [1], conditions (i)–(v) are shown to be necessary and sufficient in order that the restricted range approximation (RRA) scheme is not trivial. Calling pairs of bounding functions ℓ , u satisfying conditions (i)–(v) *permissible*, we thus have

PROPOSITION 1.1 [1]. Suppose $f \in C[a, b]$ and ℓ , u, permissible bounding functions, are such that $\ell \leq f \leq u$. Then given $\epsilon > 0$, there exists a $p_{\epsilon} \in \Pi^*(\ell, u)$ such that $||f - p_{\epsilon}|| < \epsilon$.

DEFINITION 1.1 [2]. Suppose $x_1^*, ..., x_n^*$ is a set of bounded linear functionals for which no nontrivial linear combination $\sum_{i=1}^{n} a_i x_i^*$ is ever a positive linear functional on C[a, b]. Such sequences $x_1^*, ..., x_n^*$ are said to be span indefinite.

PROPOSITION 1.2 [2]. Suppose $x_1^*, ..., x_n^*$ are span indefinite on C[a, b]. Then there exists a polynomial $p \in \Pi$ for which (i) $p(x) \ge 1$ on [a, b] and (ii) $x_j^* p = 0$ (j = 1, ..., n).

Remark 1.1. (a) Any bounded linear functional x^* on C[a, b] has a unique decomposition into the difference of two positive linear functionals (called the positive and negative parts of x^*);

 $x^* = x^{+*} - x^{-*}, \quad ||x^*|| = ||x^{+*}|| + ||x^{-*}||.$

(b) A functional x^* is purely atomic in case the associated Borel measure [9, p. 34] is purely atomic.

(c) A functional y^* is perfect nowhere dense in case (i) supp y^* is the

countable union of perfect, nowhere dense subsets of [a, b] having positive Lebesgue measure, and (ii) y^* has no atoms.

(d) A functional z^* is of purely continuum type in case (i) z^* has no atoms, and (ii) $||z^* \circ \chi_J|| = 0$ for every perfect, nowhere dense subset J of [a, b].

(e) Any bounded linear functional x^* has a unique decomposition into the sum of a purely atomic, a perfect nowhere dense, and a purely continuum linear functional;

$$x^* = w^* + y^* + z^*, ||x^*|| = ||w^*|| + ||y^*|| + ||z^*||.$$

(f) If w^* is purely atomic and $t \in \text{supp } w^*$, then t can have a zero weight only if t is a cluster point of (a countably infinite number of) atoms t_i of w^* having nonzero weights.

By the *nodes* of a pair of permissible bounding functions ℓ , u we mean the (finitely many) points t of [a, b] for which $\ell(t) = u(t)$. We use card $(T) \ge \aleph_0$ to mean T has infinitely many points, and $N_{\delta}(T)$ for a δ -neighborhood of T.

2. RRAS FUNCTIONALS

DEFINITION 2.1. Suppose x^* is a bounded linear functional on C[a, b] x^* is said to be a *RRAS functional* in case given $\epsilon > 0, f \in C[a, b]$ and permissible ℓ , u for which $\ell \leq f \leq u$ on [a, b] there necessarily exists a polynomial $p \in \Pi$ for which (i) $x^*p = x^*f$, (ii) $\ell \leq p \leq u$ on [a, b], and (iii) $||f - p|| < \epsilon$.

THEOREM 2.1. A bounded linear functional x^* on C[a, b] is a RRAS functional if and only if

$$\operatorname{card}\left(\operatorname{supp} x^{+*} \cap \operatorname{supp} x^{-*}\right) \geqslant \aleph_0. \tag{1}$$

Proof. Set $A = \sup p x^{+*}$, $B = \sup p x^{-*}$. If A and B are disjoint, consider $\ell(x) = -1 = -u(x)$ and any $f \in C[a, b]$ for which f(x) is one on supp x^{+*} and minus one on supp x^{-*} . Since f is extremal for x^* from C[a, b], any $p \in \Pi$, $||p|| \leq 1$ for which $x^*p = x^*f$ must be one on $\sup p x^{+*}$ and minus one on $\sup p x^{-*}$. Since a nonconstant polynomial can attain its norm at most finitely often, either A and B both have finite cardinality or else one of A and B is empty. Suppose that $B = \emptyset$ but A is not finite. Let $t \in A$ be a cluster point of A and consider u(x) = f(x) = -|x - t|, $\ell(x) \equiv -\infty$. Since x^* is a positive linear functional, any $p \in \Pi$ for which $\ell \leq p \leq u$ and $x^*p = x^*f$ will have to equal f on A, and hence at t. But no such $p \in \Pi$ can exist. Suppose that A and B are both nonempty finite point sets, $x^* =$ $\sum_{i=1}^{m} \alpha_i e_s$ for some nonzero constants α_i and distinct points $s_i \in [a, b]$. Without loss of generality suppose $\alpha_1 < 0$ and consider $\ell(x) = |x - s_1| =$ u(x) - 1. Let f be any continuous function on [a, b] for which $f(s_i) = \ell(s_i)$ if $\alpha_i < 0$, $u(s_i)$ if $\alpha_i > 0$. Again any polynomial $p \in \Pi$ for which $\ell \leq p \leq u$ and $x^*p = x^*f$ must interpolate f at the s_i . But no polynomial can simultaneously interpolate f at x_1 and be inside the bounding functions ℓ , u.

Hence suppose $A \cap B = \{t_1, ..., t_u\}$ is a nonempty finite point set. By the definition of the positive and negative parts of a linear functional at least one of A and B has to be infinite. Consider bounding functions $\ell(x)$, u(x)which (i) are equal at each t_i , $\ell(t_i) = u(t_i) = 0$, (ii) in some δ -neighborhood of each t_i , $\ell(x)$ coincides with the function $-|x - t_i|$, and u(x) coincides with the function $2 | x - t_i |$, (iii) are not equal if not at a t_i , $\ell(x) < 0 < u(x)$ if $x \notin A \cap B$, and (iv) are continuous on [a, b]. Choose a nonpolynomial (if possible) $f \in C[a, b]$ for which (i) $f(t_i) = 0$ (i = 1, ..., n), (ii) $f(x) = \ell(x)$ if $x \in B$, and (iii) f(x) = u(x) if $x \in A$. By construction f is extremal for x^* from those continuous functions $g \in C[a, b]$ which lie within the bounding functions ℓ , u. Hence any $p \in \Pi$ for which $\ell \leq p \leq u$ and $x^*p = x^*f$ must (without loss of generality) equal $\ell(x)$ on A and u(x) on B. Since A or B is infinite, any such polynomial is unique. Hence F can be approximated arbitrarily closely by such polynomials if and only if f is already a polynomial, in which case one of A and B must be a singleton (say A) and the other infinite. Now consider $\ell(t_1) \equiv 0$, u(x) = f(x) any nonpolynomial for which $u(t_1) = 0$ and ℓ , u are permissible. Any $p \in \Pi$ for which $\ell \leq p \leq u$ and $x^*p = x^*f$ is again uniquely determined, but this time f is not a polynomial.

Conversely, suppose $A \cap B$ is infinite.

LEMMA 2.1. Suppose $F \in C[a, b]$. Suppose L, U are permissible bounding functions for which $L \leq F \leq U$. Then there exist G, $H \in C[a, b]$ such that $L \leq G, H \leq U$ and $x^*G < x^*F < x^*H$.

Suppose $f \in C[a, b]$ and permissible ℓ , u such that $\ell \leq f \leq u$ are fixed. For $\epsilon > 0$ arbitrary, let

$$L_{\epsilon}(x) = f(x) - \epsilon, \text{ if } (f - \ell)(x) > \epsilon \quad U_{\epsilon}(x) = f(x) + \epsilon, \text{ if } (u - f)(x) > \epsilon$$
$$= \ell(x), \quad \text{otherwise:} \qquad = u(x), \quad \text{otherwise.}$$

At each node of L_{ϵ} , U_{ϵ} , we have $L_{\epsilon}(x) = \ell(x)$, $U_{\epsilon}(x) = u(x)$, so the pair L_{ϵ} , U_{ϵ} is permissible. By Lemma 2.1 there are G_{ϵ} , $H_{\epsilon} \in C[a, b]$ for which $L_{\epsilon} \leq G_{\epsilon}, H_{\epsilon} \leq U_{\epsilon}, \text{ and } x^*G_{\epsilon} < x^*f < x^*H_{\epsilon}. \text{ Let } \eta = \min\{x^*(H_{\epsilon} - f), t \in \mathbb{N}\}$ $x^*(f-G_{\epsilon})$. By Proposition 1.1 there are polynomials p_{ϵ} , q_{ϵ} for which $L_{\epsilon} \leqslant p_{\epsilon} \,,\, q_{\epsilon} \leqslant U_{\epsilon} \,,\, \parallel G_{\epsilon} - p_{\epsilon} \parallel < \eta \parallel x^{*} \parallel^{-1}\!\!/2,\, \text{and} \parallel H_{\epsilon} - q_{\epsilon} \parallel < \eta \parallel x^{*} \parallel^{-1}\!\!/2.$ Then $x^*p_{\epsilon} < x^*f < x^*q_{\epsilon}$, and choose $0 < \lambda < 1$ so that $x^*(\lambda p_{\epsilon} + (1 - \lambda p_{\epsilon}))$ $\lambda (q_{\epsilon}) = x^* f$. Since $\ell \leq L_{\epsilon} \leq \lambda p_{\epsilon} + (1 - \lambda) q_{\epsilon} \leq U_{\epsilon} \leq u$, also $||f - (\lambda p_{\epsilon} + (1 - \lambda) q_{\epsilon})|| < \epsilon$ and the proof is complete.

Proof (of Lemma 2.1). Since L, U are permissible, $T = \{x \in [a, b]: L(x) = U(x)\}$ contains at most a finite number of points. Since $A \cap B$ is infinite, $C = (A \cap B) \setminus T$ is then also infinite. Consider the decomposition of Remark 1.1 for x^* ;

$$x^{+*} = w^{+*} + y^{+*} + z^{+*},$$

$$x^{-*} = w^{-*} + y^{-*} + z^{-*}.$$
(2)

Case I. Suppose $t \in C \cap \text{supp } w^{-*}$. If t should be an isolated point of supp x^{-*} , then not only does the atom e_t have some positive weight α in w^{-*} but there even exists an $\epsilon > 0$ for which $x_{\epsilon}^{-*} = x^{-*} \circ \chi_{(t-\epsilon,t+\epsilon)} = \alpha e_t$. Since $t \notin \text{supp } w^{+*}$, $||x_{\epsilon}^{+*}|| = ||x^{+*} \circ \chi_{(t-\epsilon,t+\epsilon)}|| \to 0$ as $\epsilon \to 0^+$. Hence there is an $\eta > 0$ for which $||x_{\epsilon}^{+*}|| < ||x_{\epsilon}^{-*}|| = \alpha$ whenever $0 < \epsilon < \eta$.

Since $t \in C$, let $0 < \psi < \eta$ be such that $\ell(x) < u(x)$ whenever $x \in (t - \psi, t + \psi)$. For $0 < \epsilon < \psi$ choose g_{ϵ} , $h_{\epsilon} \in C[a, b]$ so that

- (i) $g_{\epsilon}(t) = f(t) + (u(t) f(t))/2$,
- (ii) $g_{\epsilon}(x) = f(x)$ if $x \in [a, b] \setminus N_{\eta}(t)$, and
- (iii) $f(x) \leq g_{\epsilon}(x) \leq u(x)$ otherwise, while
- (iv) $h_{\epsilon}(t) = f(t) (f(t) \ell(t))/2$,
- (v) $h_{\epsilon}(x) = f(x)$ if $x \in [a, b] \setminus N_{\eta}(t)$, and
- (vi) $\ell(x) \leq h_{\epsilon}(x) \leq u(x)$ otherwise.

As $\epsilon \to 0^+$, $x^*g \to x^*f - (u - f)(t)/2$, $x^*h_\epsilon \to x^*f + (f - \ell)(t)/2$, and x^*g_ϵ , x^*h_ϵ are continuous functions of epsilon. If u(t) > f(t), upon choosing $\epsilon > 0$ sufficiently small the desired G of Lemma 2.1 has been found (similarly for H if $f(t) > \ell(t)$). Since $t \in T$ at least one of the above two cases hold: suppose f(t) < u(t) but that $f(t) = \ell(t)$. Considering $0 < \tau < \epsilon < \psi$, choose $h_{\epsilon,\tau} \in C[a, b]$ so that (i) $h_{\epsilon,\tau}(x) = f(x)$ if $x \in N_{\tau}(t) \cup ([a, b] \setminus N_{\epsilon}(t))$, (ii) $h_{\epsilon,\tau}(x) = f(x) + (u - f)(x)/2$ if $x = t + (\psi + \eta)/2$, and (iii) $\ell(x) \leq h_{\epsilon,\tau}(x) \leq f(x)$ otherwise.

Since $t \in A \cap B$, $x^{+*} \circ \chi_{(t-\epsilon,t-\tau)} \cup (t+\tau,t+\epsilon)$ is not the zero functional (for $0 < \tau < \epsilon$ sufficiently small). In particular we can fix $0 < \tau < \epsilon < \psi$ sufficiently small that $x^{+*}h_{\epsilon,\tau} > 0$. But then $x^{-*}h_{\epsilon,\tau} = 0$ implies $x^*h_{\epsilon,\tau} > x^*f$ and $h_{\epsilon,\tau}$ is our desired H.

If t is not an isolated point of supp x^{-*} but still has a positive weight α in w^{-*} a similar construction can be made. For $t \in \text{supp } y^{-*} \setminus \text{supp } z^{-*}$ set $D = [a, b] \setminus \text{supp } y^{-*}$. Since supp y^{-*} is the union of countably many perfect nowhere dense subsets of [a, b], D is dense in [a, b]. If supp y^{-*} is actually a finite union of perfect nowhere dense subsets of [a, b], then D is also open

and we can obtain G, H by modifying f on $N_{\epsilon}(t) \cap E$ and $(N_{\epsilon}(t) \setminus N_{\tau}(t)) \cap E$ for some closed subset E of E. If supp y^{-*} is not a finite union of perfect nowhere dense subsets of [a, b], suppose $y^{-*} = \sum_{i=1}^{\infty} \beta_i \int_{\Gamma_i} \cdot d\mu_i$, where Γ_i is perfect nowhere dense of positive Lebesgue measure, $\beta_i > 0$, and μ_i has total mass one. Since $\sum_{i=1}^{\infty} \beta_i = ||y^{-*}|| < \infty$, $\sum_{i=\nu}^{\infty} \beta_i \to 0$ as $\nu \to \infty$, and hence $||\sum_{i=\nu}^{\infty} \beta_i \int_{\Gamma_i} \cdot d\mu_i || \to 0$ as $\nu \to \infty$, it is possible to ignore all but finitely many terms of y^{-*} with a negligible change in x^{-*} . Hence the above construction can again be carried out.

For $t \in \operatorname{supp} z^{-*} \operatorname{supp} z^{+*}$, for $\epsilon > 0$ sufficiently small z^{+*} and w^{+*} are the zero functional and x^{+*} reduces to y^{+*} . Let $\{D_{\varepsilon}\}_{\epsilon>0}$ be a decreasing sequence of open subsets of $[a, b] \setminus \{t\}$ whose limit (intersection) is a proper subset of $\operatorname{supp} y^{+*}$ having positive measure and not containing t. In particular, then, $||x^{-*} \circ \chi_{D_{\varepsilon}}|| \to 0$ as $\epsilon \to 0^+$ but $||x^{+*} \circ \chi_{D_{\varepsilon}}|| \to \beta > 0$ for some positive constant β . Letting E_{ε} be nonempty closed subsets of D_{ε} having positive measure, we can choose $\xi > 0$ sufficiently small so that z^{-*} makes a negligible contribution to $x^* \circ \chi_{E_{\varepsilon}}$, and the analogous construction of G, H will work.

If $t \in \text{supp } w^{-*}$ does not have a positive weight, then being a limit of atoms of w^{-*} having positive weight, choose an atom t' of w^{-*} having positive weight which will also lie in C.

Case II. $t \in \operatorname{supp} z^{**} \operatorname{supp} w^*$. If $t \in \operatorname{supp} z^{-*}$ also, then (locally at t) supp $z_{\epsilon}^{**} = [t - \epsilon, t]$ and supp $z_{\epsilon}^{-*} = [t, t + \epsilon]$ or vice versa (provided $\epsilon > 0$ is sufficiently small). To construct G, increase f on $[t, t + \epsilon]$ only: for Hincrease f on $[t - \epsilon, t]$ only). If $y_{\epsilon}^* = w_{\epsilon}^* = 0$ would be done. But $t \notin \operatorname{supp} w^*$ means $w_{\epsilon}^* = 0$ if ϵ is sufficiently small, and if $y_{\epsilon}^* \neq 0$ for all $\epsilon > 0$, let $D = [a, b] \operatorname{supp} y_{\epsilon}^*$ (if supp y_{ϵ}^* is a finite union of perfect nowhere dense sets) and modify f on $E \cap [t, t + \epsilon]$ and $E \cap [t - \epsilon, t]$, E being some appropriate closed subset of D as above. If supp y_{ϵ}^* is not a finite union, use the same approach of considering only finitely many of the infinite terms of y_{ϵ}^* that was used above in Case I.

Thus suppose $t \notin \text{supp } z^{-*}$. But then $t \in \text{supp } x^{+*}$ implies $t \in \text{supp } y^{-*}$ and for epsilon sufficiently small $x_{\epsilon}^{-*} = y_{\epsilon}^{-*}$. Construct G, H by using the D and $\{D_{\epsilon}\}_{\epsilon>0}$ approach as in Case I.

Case III. $t \notin \text{supp } (w^* + z^*)$. Since $t \in A \cap B$, $t \in \text{supp } y^{+*} \cap \text{supp } y^{-*}$. Let $D = [a, b] \setminus \text{supp } y^{+*}$, $E = [a, b] \text{ supp } y^{-*}$. Since $||y^*|| = ||y^{+*}|| + ||y^{-*}||$, D contains all of supp y^{-*} except for a set of measure zero (similarly for E and supp y^{+*}). Letting D', E' be closed compact subsets of supp y^{-*} , supp y^{+*} , contained in D and E, and of positive measure, we can find disjoint open neighborhoods E'', E'' of D', E' and construct our functions G, H by modifying f on D', E', respectively,

COROLLARY 2.1. If x^* is a RRAS functional, $f \in C[a, b]$ and ℓ , u permis-

sible bounding functions such that $\ell \leq f \leq u$ on [a, b], then there exists $a \nu > 0$ such that given $|\eta| < \nu$ there exists a polynomial p_n for which $\ell \leq p_n \leq u$ and $x^*p_n = x^*f + \eta$.

3. RRAS SEQUENCES

DEFINITION 3.1. A sequence of bounded linear functionals $x_1^*,..., x_n^*$ is said to be a *RRAS sequence* in case any nonzero $x^* \in \langle x_1^*,..., x_n^* \rangle$ is a RRAS functional.

Below we will show that one may approximate any $f \in C[a, b]$ arbitrarily closely in the RRAS scheme. Considering this eventuality, we first look at some properties of RRAS sequences.

PROPOSITION 3.1. Suppose $x_1^*, ..., x_n^*$ is a RRAS sequence on C[a, b]. Let $S = \{s_1, ..., s_m\}$ be a finite subset of [a, b]. Set $v_i^* = x_i^* \circ \chi_D$, $D = [a, b] \setminus S$. Then $v_1^*, ..., v_n^*$ is also a RRAS sequence on C[a, b].

Remark 3.1. If $S_{\delta} = N_{\delta}(S)$, $D_{\delta} = [a, b] \setminus S_{\delta}$, and $v_{i,\delta}^* = x_i^* \circ \chi_{D_{\delta}}$, it is not the case that $x_1^*, ..., x_n^*$ a RRAS sequence on C[a, b] and S a finite subset of [a, b] implies there is a $\delta > 0$ sufficiently small in order that $v_{1,\delta}^*, ..., v_{n,\delta}^*$ is necessarily a RRAS sequence. As a counterexample consider the following;

EXAMPLE 3.1. $n = 1, x_1^* = x_n^* = x^* = \int_0^1 \cdot dx - \sum_{j=1}^{\infty} 2^{-j} e_{2^{-j}} \cdot x^*$ is a RRAS functional, $v^* = x^* \circ \chi_{(0,1]}$ is a RRAS functional, but $v^* = \int_{\delta}^1 \cdot fx - \sum_{j=1}^{[-ln\delta]} 2^{-j} e_{2^{-j}}$ has supp $v_{\delta}^{+*} \cap$ supp $v_{\delta}^{-*} = \{2^{-1}, \dots, 2^{-[-\ln\delta]}\}$, a finite point set only, and so by Theorem 2.1 v_{δ}^* is not a RRAS functional, for any $\delta > 0$.

PROPOSITION 3.2. Suppose $x_1^*, ..., x_n^*$ is a linearly independent RRAS sequence on C[a, b]. Let $S = \{s_1, ..., s_m\}$ be a finite subset of [a, b]. Set $v_i^* = x_i^* \circ \chi_D$, $D = [a, b] \setminus S$. Then $v_1^*, ..., v_n^*$ is also a linearly independent RRAS sequence on C[a, b].

COROLLARY 3.1. If $S_{\delta} = N_{\delta}(S)$, $D_{\delta} = [a, b] \setminus S_{\delta}$, and $v_{i,\delta}^* = x_i^* \circ \chi_{D_{\delta}}$, then x_1^*, \dots, x_n^* a linearly independent RRAS sequence on C[a, b] and S a finite subset of [a, b] implies there exists a $\delta_0 > 0$ such that $v_{1,\delta}^*, \dots, v_{n,\delta}^*$ is a linearly independent span indefinite sequence whenever $0 \leq \delta \leq \delta_0$.

Proof. If $v_{1,\delta}^*, ..., v_{n,\delta}^*$ is not span indefinite for any $\delta > 0$, let $v_{\delta}^* = \sum_{i=1}^n \alpha_{i,\delta} v_{i,\delta}^*$ be a nonzero positive linear functional on C[a, b]. If $\delta' < \delta''$, $v_{\delta''}^* = v_{\delta'}^* \circ \chi_{D_{\delta''}} = \sum_{i=1}^n \alpha_{i,\delta''} v_{i,\delta''}^*$ must also be a positive linear functional. Since supp $x^{+*} \cap$ supp x^{-*} is infinite for any nonzero $x^* \in \langle x_1^*, ..., x_n^* \rangle$, for each such positive linear functional v_{δ}^* there must be a $\delta' < \delta$ for which

 $v_{\delta'}^*$ is not a positive linear functional. Thus given $\delta < 0$ arbitrarily small, there exist infinitely many $\{\alpha_{i,\nu}\}_{\nu>0}$ such that $v_{\nu}^* = \sum_{i=1}^n \alpha_{i,\nu}v_{i,\delta}^*$ are positive linear functionals on C[a, b], and these v_{ν}^* generate a nonzero subspace V_{δ} contained in $V_{\delta'}$ whenever $\delta < \delta'$. But dim $\langle v_1^*, ..., v_n^* \rangle = n < \infty$, so $\bigcap_{\delta>0} V_{\delta}$ is also a nonzero subspace V of $\langle v_1^*, ..., v_n^* \rangle$. But then some basis of V must consist entirely of positive linear functionals, and so $v_1^*, ..., v_n^*$ cannot be a linearly independent RRAS sequence on C[a, b].

Remark 3.2. If one finds it difficult to see why the V above must have a basis consisting of positive linear functionals, replace the V_{δ} of the above proof by positive cones W_{δ} consisting entirely of positive linear functionals. As above $W_{\delta} \supseteq W_{\delta'}$ whenever $\delta' < \delta$ and no W_{δ} is the zero cone (recall that if u^* , v^* are linearly independent positive linear functionals, and if there exist countably many distinct positive linear functionals in the positive cone spanned by u^* and v^* which do not all lie in finitely many one-dimensional subspaces of $\langle u^*, v^* \rangle$, then the positive cone spanned by u^* , v^* consists entirely of positive linear functionals).

PROPOSITION 3.3. Suppose x^* is a RRAS functional on C[a, b]. Let $v^* = x^* \circ \chi_B$, B an open subset of [a, b]. Suppose v^* is also a RRAS functional on C[a, b]. Then there exists a closed subset E of B such that $u^* = v^* \circ \chi_E = x^* \circ \chi_E$ is a (span) indefinite linear functional on C[a, b].

PROPOSITION 3.4. Suppose $x_1^*,...,x_n^*$ is a linearly independent RRAS sequence on C[a, b]. Let $v_i^* = x_i^* \circ \chi_B$, B an open subset of [a, b]. Suppose $v_1^*,...,v_n^*$ are also a RRAS sequence on C[a, b]. Then there exists a closed subset E of B such that $u_1^*,...,u_n^*$ are span indefinite on C[a, b], where $u_i^* = v_i^* \circ \chi_E = x_i^* \circ \chi_E$.

Proof. By Proposition 3.3 there is a closed subset E' of B for which $v_n^* \circ \chi_{E'}$ is an indefinite linear functional. By induction there is a closed subset E'' of B for which $v_1^* \circ \chi_{E''}, ..., v_{i+1}^* \circ \chi_{E''}, ..., v_n^* \circ \chi_{E''}$ are span indefinite (i = 0, ..., n). Let $E''' = E' \cup E''$ and set $u_i^* = v_i^* \circ \chi_{E''}$. If $u_1^*, ..., u_n^*$ is not span indefinite on C[a, b], then some $(\sum_{i=1}^{n-1} \beta_i u_i^*) + u_n^*$ is a (without loss of generality) positive linear functional on C[a, b]. Since supp $u_n^* \cap \text{supp } u_n^*$ is nonempty, necessarily

(i) $(\sum_{i=1}^{n-1} \beta_i u_i^*)^+ = u_n^{-*} + a^*$ for some positive linear functional a^* on C[a, b], and

(ii) $u^{+*} = (\sum_{i=1}^{n-1} \beta_i u_i^*)^- + b^*$ for some positive linear functional b^* on C[a, b].

Since $u_1^*, ..., u_{n-2}^*$, u_n^* are span indefinite, fixing $\beta_1, ..., \beta_{n-2}$ we find at most two values of β_{n-1} can be such that $\sum_{i=1}^{n-1} \beta_i u_i^* + u_n^*$ is not indefinite.

Fixing $\beta_1, ..., \beta_{n-3}$, β_{n-1} we likewise find at most two values of β_{n-2} . For each of those values of β_{n-2} , fixing $\beta_1, ..., \beta_{n-3}$ as before we find at most two values of β_{n-1} (for a total of four). In this way at most finitely many $u^* \in \langle u_1^*, ..., u_{n-1}^* \rangle$ are such that $u^* + u_n^*$ can fail to be indefinite. For each of them we can choose closed subsets E_j of B for which $(u^* + u_n^*) \circ \chi_{E_j}$ is indefinite, and thus overall setting $E = E^m \cup (\cup_j B_j)$ we find that the induced $u_i^* = v_i^* \circ \chi_E$ are span indefinite on C[a, b].

Remark 3.3. Perhaps a more intuitive proof to Proposition 3.4 above is to simply pick a closed subset E of B containing enough atoms of each v_i^* in its interior to render the induced linear functionals u_i^* linearly independent. Since without loss of generality each v_i^* will have atoms the others lack, choosing E to contain the proper atoms in its interior will not only render the induced u_i^* linearly independent but also span indefinite, for each u_i^* will contain atoms lying in supp $u_i^{+*} \cap \text{supp } u_i^{-*}$ which will not be atoms of any u_j^* ($j \neq i$) and hence cannot disappear in any linear combination of the u_i^* without taking a zero coefficient.

We generalize Lemma 2.1 next.

LEMMA 3.1. If $x_1^*,...,x_n^*$ is a linearly independent RRAS sequence on $C[a, b], f \in C[a, b]$ and ℓ, u permissible bounding functions such that $\ell \leq f \leq u$ [a, b], then there exists a v > 0 such that given $\sigma = (\sigma_1,...,\sigma_n) \in \{-1, 1\}^n$ there exists a continuous function j for which both

(i)
$$\ell \leq h_{\sigma} \leq u$$
 on $[a, b]$, and (ii) $\sigma_j x_j^*(h_{\sigma} - f) > v$ $(j = 1, ..., n)$.

Proof. Set $A = \{x \in [a, b] : f(x) = \ell(x)\}, B = \{x \in [a, b] : \ell(x) < f(x) < f(x) < \ell(x)\}$ u(x), $C = \{x \in [a, b]: f(x) = u(x)\}; D = A \cup C, T = \{x \in [a, b]: \ell(x) = x \in [a, b]: \ell$ u(x) = $A \cap C$, $r_i^* = x_i^* \circ \chi_B$. Suppose r_1^*, \dots, r_μ^* is a maximal linearly independent RRAS sequence among the $r_1^*, ..., r_n^*, 0 \le \mu \le n$. By Proposition 3.4 let E be a closed subset of B for which $r_1^*, ..., r_{\mu}^*$ is a (linearly independent) span indefinite sequence on C[a, b]. By Corollary 3.1 let $\delta > 0$ be such that $x_1^* \circ \chi_H$,..., $x_n^* \circ \chi_H$ is a (linearly independent) span indefinite sequence of linear functionals on C[a, b], where $H = [a, b] \setminus N_{\delta}(T)$. Since T and E are disjoint closed subsets of [a, b], suppose that $\delta > 0$ is sufficiently small such that H contains E in its interior (normality of the interval [a, b]). Set $s_i^* = x_i^* \circ \chi_I$, $I = (H \cap D) \cup E$, and $\psi = (\frac{1}{2}) \min$ $\{\min\{(u-\ell)(x): x \in H \cap D\}, \min\{(u-f)(x): x \in E\}, \min\{(f-\ell)(x): x \in E\}\}.$ By separately analyzing the $x_1^*, ..., x_{\mu}^*$ and the $x_{\mu+1}^*, ..., x_n^*$ we observe that the s_1^*, \dots, s_n^* may be assumed to be a (linearly independent) span indefinite sequence on C[a, b]. Writing each functional as $s_i^* = s_i^* \circ \chi_{A \cap H} + s_i^* \circ$ $\chi_{C \cap H} + s_i^* \circ \chi_E$, defining $t_i^* = s_i^* \circ \chi_{A \cap H} - s_i^* \circ \chi_{C \cap H} + s_i^* \circ \chi_E$ we have that t_i^*, \dots, t_n^* is also a (linearly independent) span indefinite sequence on C[a, b].

By linear independence choose $p_{i,\iota} \in C[a, b]$ $(i = 1, ..., n; \iota = -1, 1)$ so that $s_i * p_{i,i} = i \delta_{ij}$. By span indefiniteness (Proposition 1.2) choose $k' \in$ C[a, b] so that (i) $k' \ge 1$ on [a, b], and (ii) $t_j * k' = 0$ (j = 1, ..., n). Since $A \cap H$, $C \cap H$, E are mutually disjoint compact subsets of [a, b] whose union contains the support of all the s_k^* and t_i^* , choose a $k \in C[a, b]$ so that (i) k(x) = -k'(x) if $x \in C \cap H$, (ii) k(x) = k'(x) if $x \in (A \cap H) \cup E$, and (iii) ||k|| = ||k'||. Since $s_i * k = t_i * k'$ and ψ is positive, setting $q_{i,i} = \alpha (p_{i,i} + \alpha)$ βk) we may choose positive constants α and β so that (i) $0 < q_{i,i}(x) \leq \psi$ for $x \in A \cap H$, (ii) $-\psi \leq q_{i,i}(x) < 0$ for $x \in C \cap H$, (iii) $-\psi \leq q_{i,i}(x) \leq \psi$ for $x \in E$, (iv) $s_j^* p_{i,\iota} = 0$ if $j \neq i$, and (v) $\iota s_i^* p_{i,\iota} > 0$. Set $\nu = (2n)^{-1} \min$ $\{|x_i^*(q_{i,i})|: i = 1, ..., n \text{ and } i = -1, 1\}$. Consider the permissible bounding functions U(x) = u(x) - f(x), $L(x) = \ell(x) - f(x)$. Observe that (i) L, U has the same nodes as ℓ , u (the set T), (ii) L(x) = 0 and $2\psi \leq U(x)$ for $x \in$ $A \cap H$, (iii) $L(x) \leq -2\psi$ and U(x) = 0 for $x \in C \cap H$, and (iv) $L(x) \leq -2\psi < 0$ $0 < 2\psi \leq U(x)$ for $x \in E$. Since $L(x) < q_{i,i}(x) < U(x)$ for $x \in I$ a compact subset of [a, b], and $L(x) \leq 0 \leq U(x)$ globally on [a, b], for $\eta > 0$ sufficiently small we can find continuous functions $h_{i,i,\eta}$ so that (i) $h_{i,i,\eta}(x) = q_{i,\eta}(x)$ if $x \in I$, (ii) $h_{i,\iota,\eta}(x) = 0$ if dist $(x, I) \ge \eta$, and (iii) $L(x) \le h_{i,\iota,\eta}(x) \le U(x)$ otherwise. Since $J_{\eta} = \{x \in [a, b]: \text{ dist } (x, I) < \eta\}$ is a decreasing sequence of open subsets of [a, b] whose limit (intersection) is I, $x_j * h_{i,i,\eta} \rightarrow s_j * h_{i,i,\eta}$ as $\eta \to 0$. Fix $\eta > 0$ so that $|(x_j^* - s_j^*) h_{i,\iota,\eta}| < n^{-1} \cdot 10^{-6}\nu$ uniformly in i and ι and set $h_{\sigma} = n^{-1} \sum_{i=1}^{n} h_{i,\sigma_{i},\eta}$. Then $L \leqslant h_{\sigma} \leqslant U$ and $x_{i}^{*}h_{\sigma} = n^{-1}(x_{j}^{*}h_{i,\sigma_{i},\eta})$ $+ n^{-1} \sum_{i=1, i \neq j}^{n} x_{i}^{*} h_{i,\sigma_{i},\eta}$. Since the last term has magnitude at most $10^{-6} \nu$ while the first term has magnitude at least 2ν , with sign σ_i , we find $\sigma_j x_j * h_\sigma > \nu$ (j = 1, ..., n) and the conclusion of the lemma follows.

THEOREM 3.1. Suppose $x_1^*, ..., x_n^*$ is a RRAS sequence of linear functionals on C[a, b]. Then given $f \in C[a, b]$ and permissible ℓ , u for which $\ell \leq f \leq u$ there necessarily exists a polynomial $p \in \Pi$ for which $\ell \leq p \leq u$ and $x_i^*p = x_i^*f$ (i = 1, ..., n).

Proof. Without loss of generality suppose the $x_1^*,..., x_n^*$ are linearly independent on C[a, b]. Let $\sigma = (\sigma_1, ..., \sigma_n) \in \{-1, 1\}^n$ be arbitrary. Set $\tau = (\sigma_1, ..., \sigma_{n-1}, -\sigma_n)$ and choose continuous functions h_σ , h_τ by Lemma 3.1. By Proposition 1.2, we may find polynomials p_σ , p_τ for which $\ell \leq p_\sigma$, $p_\tau \leq u$ and $\sigma_j x_j^*(p_\sigma - f) > v$, $\tau_j x_j^* p_\tau > v$ (j = 1, ..., n). Let $0 < \lambda < 1$ be such that $x_n^*(\lambda p_\sigma + (1 - \lambda) p_\tau - f) = 0$ and set $p_\sigma' = \lambda p_\sigma + (1 - \lambda) p_\tau$. Then (i) $\ell \leq p_{\sigma'} \leq u$, (ii) $x_n^*(p_{\sigma'} - f) = 0$, (iii) $\sigma_j x_j^*(p_{\sigma'} - f) > v$ (j = 1, ..., n - 1), and (iv) $(\sigma_1, ..., \sigma_{n-1}) \in \{-1, 1\}^{n-1}$ is arbitrary. By induction there is a polynomial $p \in \Pi$ for which $\ell \leq p \leq u$ and $x_j^*(p - f) = 0$ (j = 1, ..., n).

COROLLARY 3.2. Suppose $x_1^*, ..., x_n^*$ is a RRAS sequence of linear

functionals on C[a, b]. Then given $f \in C[a, b]$, permissible ℓ , u for which $\ell \leq f \leq u$, and $\epsilon > 0$ arbitrary there necessarily exists a polynomial $p \in \Pi$ for which (i) $\ell \leq p \leq u$, (ii) $x_j * p = x_j * f$ (j = 1, ..., n), and (iii) $||f - p|| \leq \epsilon$.

Remark 3.4. Corollary 3.2 is our desired Weierstrass theorem for RRAS approximation with arbitrary permissible bounding functions. Notice the manner we have derived our Weierstrass theorem as a corollary of Theorem 3.1 parallels the derivation of the Weierstrass-type theorem Proposition 1.2 in [1] as a corollary to a theorem (Proposition 1.1) similar in statement to Theorem 3.1 above. Such an approach (obtaining Weierstrass-type theorems as corollaries of theorems analogous to Theorem 3.1 above) is clearly useable for any approximation process whose side conditions are amenable to ("invariant" under) convex linear combinations.

References

- 1. D. J. JOHNSON, On the nontriviality of restricted range polynomial approximation, SIAM J. Numer. Anal. 12 (1975).
- 2. D. J. JOHNSON, One-sided approximation with side conditions, J. Approximation Theory 16 (1976), 366-371.
- 3. D. J. JOHNSON, SAIN approximation in C[a, b], J. Approximation Theory 17 (1976), 14–34.
- 4. L. L. SCHUMAKER AND G. D. TAYLOR, On approximation by polynomials having restricted ranges. II, SIAM J. Numer. Anal. 6 (1969), 31-36.
- 5. G. D. TAYLOR, On approximation by polynomials having restricted ranges, SIAM J. Numer. Anal. 5 (1968), 258–268.
- 6. G. D. TAYLOR, Approximation by functions having restricted ranges III, J. Math. Anal. Appl. 27 (1969), 241-248.
- G. D. TAYLOR, Approximation by functions having restricted ranges: Equality case, Numer. Math. 14 (1969), 71–78.
- G. D. TAYLOR AND M. J. WINTER, Calculation of best restricted approximations, SIAM J. Numer. Anal. 7 (1970), 248–255.
- 9. W. RUDIN, "Real and Complex Analysis," McGraw-Hill, New York, 1966.