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Let X be a compact subset of [a, 5], and let C(X) denote the Banach space
of all real-valued continuous functions defined on X. Let IT denote the set of
polynomials in C(X). Consider two extended real-valued functions 7 and u
defined on X which satisfy the following conditions.

(i) ¢ may take on the value — oo, but never 4 co;
(i) u may take on the value - o0, but never —oo0;
(iii) there exist /,u continuous on [a, 5] such that #£(x) < {(x) <
#(x) < u(x) for all xe X.
(iv) the, u of (iii) may be chosen so that #(x) = #(x) at a finite number

of points of [a, b] only; and moreover,

(v) if Z(y) = u(y), then there exist constants ¢, &', 4, ¢ (with y > 0,
£ £ &) and a positive integer « such that, for x € N,( y),

R(Zp’_{(x) _‘f(y)) < f’(x - y)a < f(x - y)a (1)
< R(&p, w(x) — u(y),

where R(i, -) rotates the (x, u)-plane by ah angle ¢ at the point (y, {(y) =

w(y)- ‘
Let II* =IT*{, u) ={pell: 1 <p <u on X}. We may now state the

restricted range approximation scheme as follows.

RESTRICTED RANGE APPROXIMATION SCHEME. Given fe C(X), approxi-
mate f by polynomials p & IT*,

This approximation scheme has been considered by several authors (e.g.,
[1,4-8]). Between them the questions of existence, uniqueness, charac-
terization, and nontriviality of best restricted range (polynomial) approxima-
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tions have been considered, and some algorithms given. In this paper we
consider the related

Restricted Range Approximation with Side Conditions Scheme.
Given f € C(X) and bounded linear functionals x,%,..., x,*, approxi-
mate f by polynomials p € IT* for which x;*p = x,*f (i = i,..., n).

We characterize those n-tuples of linear functionals for which one may
approximate any continuous function f arbitrary closely in the restricted
range approximation with side conditions (RRAS) scheme, for any permis-
sible pair of bounding functions 7, u. For simplicity we will assume that
X = [a, b} below.

1. PRELIMINARIES

In [1], conditions (i}-(v) are shown to be necessary and sufficient in order
that the restricted range approximation (RRA) scheme is not trivial. Calling
pairs of bounding functions 7, u satisfying conditions ()—(v) permissible, we
thus have

Proposition 1.1 [1). Suppose fe Cla, b] and ¢, u, permissible bounding
Sunctions, are such that £ <f<u. Then given € >0, there exists a p. &
II*({, u) such that | f — p. || < e.

DermamioN 1.1 [2]. Suppose x;%,..., x,* is a set of bounded linear
functionals for which no nontrivial linear combination 3., ; a;x;* is ever 2
positive linear functional on Cla, b]. Such seguences x;*,..., x,,* are said to
be span indefinite.

PropositioN 1.2 [2]. Suppose xi*,..., x,* are span indefinite on Cla, b].
Then there exists a polynomial p € IT for whixh (i) p(x) = 1 on [a, b] and (ii)
X% =0(j=1,.,n).

Remark 1.1. (a) . Any bounded linear functional x* on Cla, b} has a
unique decomposition into the difference of two positive linear functionals
{called the positive and negative parts of x*);

xF = xt¥ — x—%, fx* = x* [+ x*].

(b) A functional x* is purely atomic in case the associated Borel
measure [9, p. 34] is purely atomic.

¢} A functional y* is perfect nowhere dense in case (i) supp y* is the
p
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countable union of perfect, nowhere dense subsets of [, b] having positive
Lebesgue measure, and (ii) y* has no atoms.

(d) A functional z* is of purely continuum type in case (i) z* has no
atoms, and (i1) ||z* e y,|| =0 for every perfect, nowhere dense subset
J of [a, b].

(¢) Any bounded linear functional x* has a unique decomposition
into the sum of a purely atomic, a perfect nowhere dense, and a purely
continuum linear functional;

X* =w* A y* bz xR = w2

(f) If w* is purely atomic and ¢ e supp w*, then 7 can have a zero
weight only if 7 is a cluster point of (a countably infinite number of) atoms #;
of w* having nonzero weights.

By the nodes of a pair of permissible bounding functions Z, u we mean the
(finitely many) points ¢ of [a, b] for which £(¢) = u(t). We use card(T) > &,
to mean 7 has infinitely many points, and Ny(7) for a d-neighborhood of 7.

2. RRAS FUNCTIONALS

DermaTioN 2.1. Suppose x* is a bounded linear functional on Cla, b]
x* is said to be a RRAS functional in case given € > 0, f € Cla, b} and permis-
sible Z, u for which £ < f << on [a, b] there necessarily exists a polynomial
p €1l for which () x*p = x*f, (i) £ < p < won[a, bl and (i) | f — p|| <e.

THEOREM 2.1. A bounded linear functional x* on Cla, b] is a RRAS
Junctional if and only if

card (supp x+* N supp x*) > ¥, . 6))

Proof. Set A =suppxt*, B=suppx*. If A4 and B are disjoint,
consider #(x) = —1 = —u(x) and any fe Cla, b] for which f(x) is one on
supp xT* and minus one on supp x—*. Since f'is extremal for x* from Claq, 5],
any pell, | p|| <1 for which x*p = x*f must be one on supp x+* and
minus one on supp x~*. Since a nonconstant polynomial can attain its norm
at most finitely often, either 4 and B both have finite cardinality or else one
of 4 and B is empty. Suppose that B = & but 4 is not finite. Let re 4 be a
cluster point of 4 and consider u(x) =f(x) = — |x —t|,f(x) = —oo.
Since x* is a positive linear functional, any p €Il for which £ < p < u and
x*p = x*f will have to equal f on A4, and hence at 7. But no such p €Il can
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exist. Suppose that 4 and B are both nonempty finite point sets, x* =
I a;e,, for some nonzero constants «, and distinct points s; € {a, &].
Without loss of generality suppose «; < 0 and consider /(x) = | x — 5, | =
u{(x) — 1. Let £ be any continuous function on {g, 5] for which f(s;) = 4{(s,)
if o < 0, uls) if o, > 0. Again any polynomial p € 71 for which £ < p < wu
and x*p = x*f must interpolate f at the s;. But no polynomial can simul-
taneously interpolate fat x; and be inside the bounding functions 7, u.

Hence suppose 4 N B = {t, ..., t,} i a nonempty finite point set. By the
definition of the positive and negative parts of a linear functional at least
one of A and B has to be infinite. Consider bounding functions #(x), u{(x)
which (i) are equal at each ¢z, , £(¢;) = u(t,) = 0, (i) in some S-neighborhood
of each ¢; , {(x) coincides with the function — | x — ¢; |, and u(x) coincides
with the function 2 | x — ;| , (ili) are not equal if not at a ¢, , £/{x) < 0 << u{x}
if x¢ 4 N B, and (iv) are continuous on [a, b}. Choose a nonpolynomial (if
possible) fe Cla, b] for which (i) f(t) =0 (i = 1,...,n}, (i) f(x) =0
x € B, and (iii) f(x) = u(x) if x € A. By construction fis extremal for x* from
those continuous functions g € Cla, ] which lie within the bounding func-
tions 7, u. Hence any pell for which £/ <p <u and x*p = x*f must
(without loss of generality) equal #(x) on 4 and u(x) on B. Since 4 or B is
infinite, any such polynomial is unique. Hence F can be approximated
arbitrarily closely by such polynomials if and only if £is already a polynomial,
in which case one of 4 and B must be a singleton (say 4) and the other
infinite. Now consider £(¢,) = 0, u(x) = f{x) any nonpolynomial for which
u(ty) = 0 and ¢, u are permissible. Any p € /7 for which / <p < u and
x*p = x*fis again uniquely determined, but this time fis not a polynomial.

Conversely, suppose 4 N B is infinite.

Lemwma 2.1, Suppose Fe Cla, b]. Suppose L, U are permissible bounding
SJunctions for which L <F < U. Then there exist G, H € Cia, b} such that
L <G HCUand x*G < x*F < x*H.

Suppose fe Cla, b] and permissible #, u# such that ¢ < f <{ u are fixed. For
e > 0 arbitrary, let

Lix)=f(x) — e if (f = Yx) > ¢ Udx) =f(x) + ¢ if (u—f)x) >«

= #(x), otherwise: = u(x), otherwise.

At each node of L., U,, we have L(x) = {(x), Ufx) = u(x), so the pair
L., U, is permissible. By Lemma 2.1 there are G., H, € Cla, b] for which
L. <G, H <U,, and x*G, < x*f < x*H_,. Let n = min{x*(H, — f),
x*(f— G} By Proposition 1.1 there are polynomials p., g¢. for which
Lo<pe,q.<U, G —pl <qlix*[I72,and || H. — g.{| <nll x*I7%/2.
Then x*p, < x*f < x*q., and choose 0 << A <1 so that x™(Ap. + -
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A q) = x*f. Since £ < L. < Ap. + (1 — N g < U: <, also ||/~ (Ape +
(1 — 2) ¢J)l] < € and the proof is complete. §

Proof (of Lemma 2.1). Since L, U are permissible, T = {x¢ela, b]:
L{x) = U(x)} contains at most a finite number of points. Since 4 N B is
infinite, C = (4 N B)\T is then also infinite. Consider the decomposition of
Remark 1.1 for x*;

XTF = bk b bk L gk

Xx~* = w¥ L y=F L zF, @

Case 1. Suppose t e C N supp w—*. If ¢ should be an isolated point of
supp x—*, then not only does the atom e, have some positive weight « in w—*
but there even exists an e >0 for which x7* = x ™ o y( e 109 = ae; .
Since # ¢ supp wt¥, | x7F | = || ¥ 0 y(—e.t40) || = 0 as € — 0%, Hence there
is an 9 > 0 for which || x* || < | x7* || = « whenever 0 < ¢ < 7.

Since t € C, let 0 < 4§ << 7 be such that #(x) < u(x) whenever x € (t — ¢,
t + ). For 0 << e << 4 choose g, , k. € Cla, b} so that

(@) g2) = f() + ) — f(2))/2,

(i) gdx) = f(x) if x € [a, P]\N,(2), and
(i) f(x) < gdx) < u(x) otherwise, while
(v) h(t)=f@t)— (f@) —£@)/2,

(V) hdx) = f(x) if x € [a, B\N,(¢), and
i) Ax) < hix) < u(x) otherwise.

As €— 07, x*g—x*— (u — )Y)2, x*h.— x*f+ (f— O)()/2, and
x*g. , x*h, are continuous functions of epsilon. If u(z) > f(¢), upon choosing
€ > 0 sufficiently small the desired G of Lemma 2.1 has been found (similarly
for H if f(¢) > £(t)). Since t € T at least one of the above two cases hold:
suppose f(¢) <<u(t) but that f(r) = #¢). Considering 0 <7 <<e <,
choose 4., € Cla, b] so that (i) 4. .(x) =f(x) if xe N(t) U (o, BAN(L)),
(i) 7e.(x) = f(x) + (@ — )2 if x=1t+ @+ n)/2, and (i) 4(x) <
h .(x) < f(x) otherwise.

Since ted N B, x** o x@_ctm) Y (tir.t0e 18 DOt the zero functional (for
0 < 7 <C e sufficiently small). In particular we can fix 0 << 7 < € < ¢ suffi-
ciently small that xt*h . > 0. But then x~*h., = 0 implies x*h . > x*f
and A, , is our desired H.

If ¢ is not an isolated point of supp x—* but still has a positive weight « in
w—* a similar construction can be made. For ¢ esupp y~*\supp z—* set
D = [a, b]\supp y—*. Since supp y—* is the union of countably many perfect
nowhere dense subsets of [a, b], D is dense in [a, b]. If supp y—* is actually a
finite union of perfect nowhere dense subsets of [, 6], then D is also open
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and we can obtain G, H by modifying f on N{(t) N E and (NA)\N()) N E
for some closed subset E of E. If supp y—* is not a finite union of perfect
nowhere dense subsets of [a, 5], suppose y=* = 3, B, fr du; , where I';
is perfect nowhere dense of positive Lebesgue measure, B8; > 0, and p, has
total mass ome. Since Y, , B8; =y *|| < o0, T, B;— 0 as v — 0, and
hence | Y5, B; fpi ~du; || =0 as v— o0, it is possible to ignore all but
finitely many terms of y—* with a negligible change in x—*. Hence the above
construction can again be carried out.

For ¢ e supp z~*\supp z+*, for ¢ > O sufficiently small z** and w** are
the zero functional and x** reduces to y+*. Let {D,}.., be a decreasing
sequence of open subsets of [a, b]\{¢} whose limit (intersection) is a proper
subset of supp y** having positive measure and not containing ¢. In particular,
then, || x=* o xp,[| > 0as e — 0+ but | x** o yp || — B > 0 for some positive
constant . Letting E, be nonempty closed suosets of D, having positive
measure, we can choose ¢ > 0 sufficiently small so that z—* makes a negli-
gible contribution to x* o Xk, » and the analogous construction of G, H will
work.

If t € supp w—* does not have a positive weight, then being a limit of atoms
of w—* having positive weight, choose an atom ¢’ of w—* having positive weight
which will also lie in C.

Casell. tesupp zt*\supp w*. If fesupp z—* also, then (locally at ¢)
supp zI* =t — ¢, ¢] and suppz;* = [f,f + €] or vice versa (provided
e > 0 is sufficiently small). To construct G, increase fon [¢, ¢ + €] only: for H
increase fon [t — ¢, ¢] only). If y.* = w_* = 0 would be done. But ¢ ¢ supp w*
means w.* = 0 if € is sufficiently small, and if y.* £ 0 for all « > 0, let
D = [a, b}\supp y.* (if supp y.* is a finite union of perfect nowhere dense
sets) and modify fon EN [z, t 4+ €] and EN [r — ¢, ¢], E being some appro-
priate closed subset of D as above. If supp y.* is not a finite union, use the
same approach of considering only finitely many of the infinite terms of y.*
that was used above in Case 1.

Thus suppose ¢ ¢ supp z—*. But then ¢esupp x+* implies ¢ €supp y—*
and for epsilon sufficiently small x_* = y_*, Construct G, H by using the D
and {D,}.., approach as in Case 1.

Case 1. t ¢ supp (w* 4 z*). Since t€ A N B, tesupp y+* N supp y—*.
Let D = [a, b]\supp y+*, E = [a,b]suppy~*. Since [y*[ =ipyt*[ 4
J3* 1, D contains all of supp y—* except for a set of measure zero (similarly
for E and supp y**). Letting D', E’ be closed compact subsets of supp y—*,
supp y*+*, contained in D and E, and of positive measure, we can find disjoint
open neighborhoods E”, E” of D', E’ and construct our functions G, H by
modifying f on D', E’, respectively, §

COROLLARY 2.1. If x* is a RRAS functional, fe Cla, b] and ¢, u permis-
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sible bounding functions such that ¢{ <f<u on |a,b], then there exists
a v > 0 such that given | v | < v there exists a polynomial p, for which £ <
Dy Suand x*p, = x*f + .

3. RRAS SEQUENCES

DermvuTION 3.1. A sequence of bounded linear functionals x;*,..., x,,* is
said to be a RRAS sequence in case any nonzero x* € {x;*,..., x,*> is a RRAS
functional.

Below we will show that one may approximate any fe Cla, b} arbitrarily
closely in the RRAS scheme. Considering this eventuality, we first look at
some properties of RRAS sequences.

ProrosiTioN 3.1. Suppose xi*,..., x,* is a RRAS sequence on Cla, b).
Let S = {8 ,...,8,,} be a finite subset of [a, b). Set v;* =x;*cxp, D =
[a, BI\S. Then v,*,..., v,* is also a RRAS sequence on Cla, b].

Remark 3.1. If Sa N«S), Dy = [a, b1\S;, and vy, = x;* o xp,, it is
not the case that x,*,..., x,* a RRAS sequence on Cla, b] and S a finite
subset of [g, b] implies there is a 6 > 0 sufficiently small in order that v, ,...,
v} 5 is necessarily a RRAS sequence. As a counterexample consider the
following;

ExaMpiE 3.1. n=1,x% = x,* = x* = fo dx — Xy 27e,s. x*is a
RRAS functional, v* = x* °X@alisa RRAS functional, but v* = fa Sfx —
Zf:"s} 279, has supp v7* N supp vz ¥ = {271,..., 2-1-1031} 3 finite point set
only, and so by Theorem 2.1 vg* is not a RRAS functional, for any 8 > 0.

ProrosiTION 3.2. Suppose xi*,..., x,* is a linearly independent RRAS
sequence on Cla, bl. Let S = {s; ,..., S,,} be a finite subset of [a, b]. Set v;* =
x¥oxp, D =[a, b\S. Then v,*,..., v,* is also a linearly independent RRAS
sequence on Cla, b].

COROLLARY 3.1. If S35 = NyS), Ds = la,b\Ss, and v, = x;*o XDy
then x;*,..., x,* a linearly independent RRAS sequence on Cla, b] and S a
finite subser of [a, b] implies there exists a 8, > O such that v{, ..., V5, is a
linearly independent span indefinite sequence whenever 0 < 8 < &, .

Proof. If vf,,..., v}, is not span indefinite for any 8 >0, let »,* =
> a; 5075 be a nonzero positive linear functional on Cla, b]. If 8’ < 8",
Vsh = Vg © Xpy = 1 %50, must also be a positive linear functional.
Since supp x** N supp x—* is infinite for any nonzero x* e {xy*%,..., x,*>,
for each such positive linear functional vs™ there must be a 8’ << 8 for which
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v is not a positive linear functional. Thus given § << 0 arbitrarily small,
there exist infinitely many {«;,},5o such that v,* = ¥;_; &, ,0F; are positive
linear functionals on Cla, b}, and these v,* generate a nonzero subspace ¥
contained in ¥y whenever 6 < &'. But dim {v/*,.., v, =n < w0, so
Nswos Vs is also a nonzero subspace ¥ of (v, *,..., v,*>. But then some basis
of V' must consist entirely of positive linear functicnals, and so v, *,..., v, *
cannot be a linearly independent RRAS sequence on Cia, b]. §

Remark 3.2. 1f one finds it difficult to see why the I above must have a
basis consisting of positive linear functionals, replace the ¥, of the above
proof by positive cones W, consisting entirely. of positive linear functionals.
As above W; 2 Wy whenever 8’ << 8 and no W; is the zero cone (recall thai
if u*, v* are linearly independent positive linear functionals, and if there
exist countably many distinct positive linear functionals in the positive cone
spanned by #* and »* which do not all lie in finitely many one-dimensional
subspaces of {u*, v*>, then the positive cone spanned by u*, v* consists
entirely of positive linear functionals).

ProrosiTion 3.3. Suppose x* is a RRAS functional on Cla, b). Let
v* = x* o yp, B an open subset of [a, b]. Suppose v* is also a RRAS func-
tional on Cla, b]. Then there exists a closed subset E of B such that u* =
v¥ o yp == x* o yp is a (span) indefinite linear functional on Cla, bl.

ProposiTionN 3.4, Suppose xi*,..., x,* is a linearly independent RRAS
sequence on Cla, b]. Let v;* = x,;* o yg, B an open subset of [a, b]. Suppose
vy %, 0, are also a RRAS sequence on Cla, b). Then there exists a closed
subset E of B such that w*,..., u,* are span indefinite on Cla, b, where u,* =
0% o xg = x;* o xg .

Proof. By Proposition 3.3 there is a closed subset £’ of B for which
v,% o xgz is an indefinite linear functional. By induction there is a closed
subset E” of B for which v,* o xp7,..., 051 0 X&7, Vi1 0 Xzrsers U © Xz~ are
span indefinite (7 == 0,...,n). Let E” = E' U E” and set u,* = p;¥ o ypr. If
u; %,..., u,,’* is not span indefinite on Cla, b], then some (Z:-:ll Ban®) + u,* is
a (without loss of generality) positive linear functional on Cla, 51. Since
supp u;* M supp u* is nonempty, necessarily

® (Z::ll Byt = uy* + a* for some positive linear functional a*
on Cla, b], and

i) wr*= (Z:-:ll Ba ¥y~ - b* for some positive linear functional 5%
on Cla, bl.

Since uy*,..., u_, , u,* are span indefinite, fixing B; ..., Sa_, we find at most
~1 . . .
two values of B,_, can be such that 3, Bu* + u,* is not indefinite.

640/19/4-3
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Fixing By ,..., Bu_s » By We likewise find at most two values of B, ,. For
each of those values of §8,_, , fixing 8, ,..., B,_s as before we find at most two
values of 8,_; (for a total of four). In this way at most finitely many u*
{n ¥y, uF 4> are such that »* + u,* can fail to be indefinite. For each of
them we can choose closed subsets E; of B for which (u* + u,*) o yp, is
indefinite, and thus overall setting E = E” U (U;B;) we find that the induced
u;* = v;* o yp are span indefinite on Cla, b]. #

Remark 3.3. Perhaps a more intuitive proof to Proposition 3.4 above is to
simply pick a closed subset £ of B containing enough atoms of each ¢,;* in
its interior to render the induced linear functionals u;* linearly independent..
Since without loss of generality each v,* will have atoms the others lack,
choosing E to contain the proper atoms in its interior will not only render the,
induced u;* linearly independent but also span indefinite, for each u,* will
contain atoms lying in supp u;™* N supp u;* which will not be atoms of any
u;* (j 5= 1) and hence cannot disappear in any linear combination of the u;*
without taking a zero coefficient.

We generalize Lemma 2.1 next.

LemMa 3.1, If xi*,..., x,* is a linearly independent RRAS sequence on
Cla, b], fe Cla, b] and ¢, u permissible bounding functions such that £ <
f<u la,bl, then there exists a v >0 such that given o = (oy ,..., 0,) €
{—1, 1}" there exists a continuous function j for which both

() £ < h, <uonla, bl, and (i) o;x;,*(h, — f) > v (j = 1,..., n).

Proof. Set A ={xe]a,bl:f(x) =4Ax)}, B={xela, b]:{(x) <f(x) <
u(x)}, C={xela,bl: fxX)=uXx)}; D=AVUC, T={xela,bl: Ax)=
wx)} = AN C, r* =x;*oyy. Suppose r*,...,r,* is a maximal linearly
independent RRAS sequence among the r*,..., . *, 0 < p < n. By Proposi-
tion 3.4 let E be a closed subset of B for which r¥*,...,r,* is a (linearly
independent) span indefinite sequence on Cla, b]. By Corollary 3.1 let § > 0
be such that x;* o xg ,..., X, * o yy is @ (linearly independent) span indefinite
sequence of linear functionals on Cla, b], where H = [a, b]\N(T). Since T
and E are disjoint closed subsets of [a, b], suppose that 6 >0 is
sufficiently small such that H contains F in its interior (normality of the
interval [a, B]). Set s;* =x*oy;, I=(HND)UVE, and ¢ = (}) min
{min{(u — £)}(x): x € H N D},min{(u — f)(x): x € E}, min{(f — £}x): x € E}}.
By separately analyzing the x;*,..., x,* and the x¥,, ,..., x,* we observe that
the s,%,..., 5,* may be assumed to be a (linearly independent) span indefinite
sequence on Cla, b]. Writing each functional as s;* = s;¥ oy 4o + 550 -
Xcar + 8% o xg , defining t,* = 5% o ¥ yng — 5% © Xcnr + 57 0 xe We have
that £;*,..., £,* is also a (linearly independent) span indefinite sequence on
Cla, b].
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By linear independence choose p; € Cla, 8] (i=1,.,n 1= —1,1) so
that s;*p, , = 18;; . By span indefiniteness {Proposition 1.2) choose k'«
Cla, b] so that (i) &' =1 on [g, b], and (i) #,*k =0 (j = 1,..., #). Since
AN H, Cn H, E are mutually disjoint compact subsets of {a, 5] whose
union contains the support of all the s,* and ¢;*, choose a k € Clg, 5] s0 that
® kx)y=—KkKxifxeCn H, (i) k(x)=k'(x) if xe(4d N H) U E, and
(iii) || k|| = || k' || . Since s;%k = ¢;*k’ and i is positive, setting ¢, , = o p; , +
Bk) we may choose positive constants « and S so that (i) 0 < g, (x) < ¢ for
xeANH,{) —¢ <q;(x) <0forxe CnH, ({i)) —¢ < g, (x) < for
xe€E, {iv) s;%p;, =0 if j=£1i, and (v) us;*p;, > 0. Set v = (2u) min
{l x;%(g;. )l : i =1,...,n and ¢« = —1, 1}. Consider the permissible bounding
functions U(x) = u(x) — f(x), L(x) = &(x) — f(x). Observe that () L, U
has the same nodes as 4, u (the set 7), (if) L(x) = 0 and 2¢ < U(x) for x =
AN H ) L{x) <—2¢and Ulx) = 0forxe CN H,and (iv) L{x) < —2¢ <
0 < 2¢ << Ulx) for x € E. Since L{x) < g, (x) < Ufx) for x e J a compact
subset of [a, b], and L(x) < 0 < U(x) globally on [g, 5], for » > § sufficiently
small we can find continuous functions 4, , ,, so that (i) A, , ., (x) = ¢, (x) if
xel, (i) A, (x)=0 if distCe, 1) = n, and @) L{x) <k, (&) < Ulx)
otherwise. Since J, = {x € [q, b}: dist (x, I} < 7} is a decreasing sequence of
open subsets of [q, b] whose limit (intersection) is 7, x;%%; ., — 5;%h;.. ., as
7 — 0. Fix 5 > 0 so that |(x;* — 5, 4;,,., | <r™ - 105 uniformly in i/ and
vand set b, = n1 Y, Bisopm - Then L << h, < U and x;%h, = n7(%%, ;0
+nt ZLLW- X;*h;,, - Since the last term has magnitude at most 10~%
while the first term bhas magnitude at least 2v, with sign o,, we find
o;x;*h, > v {(j = 1,..., n) and the conclusion of the lemma follows. §

THEOREM 3.1. Suppose x,*,..., x,* is a RRAS sequence of linear func-
tionals on Cla, b]. Then given fe Cla, b and permissible £, u for which £ <
S < u there necessarily exists a polynomial p € Il for which { < p < u end
x¥p = x* (i =1,.,n).

Proof. Without loss of generality suppose the x,*,..., x,* are linearly
independent on Cla, b]. Let o = (o4 ,..., 6, €{—1, 1}* be arbitrary. Set
T = (0q 5u.., Gpy » —0,) and choose continuous functions 4, , 2, by Lemma 3.1,
By Proposition 1.2, we may find polynomials p,, p. for which /< p,,
p. <<uand ox; ¥ p, — ) > v, mx¥p, >v(j=1,.,n). Let 0 <A <1 be
such that x,*(Ap, + (1 — A p, —f) =0 and set p,/ = dp, + ({1 — A)p,.
Then () £ < p,/ < u, (i) x,™(p,” — ) =0, (i) opc;(p,” — f) >v (j=1,
s 1 — 1}, and (iv) (o 5u.er 0y €{—1, 1}*1 is arbitrary. By induction there
is a polynomial p eIl for which / <p <u and x;*(p — ) =0 {(j=1,
i) B

CoroLLAaRY 3.2, Suppose xi%,...,x,* is a RRAS seguence of Ilinear
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Junctionals on Cla, b]. Then given fe Cla, bl, permissible £, u for which
¢ < f < u, and € > 0 arbitrary there necessarily exists a polynomial p < I1 for
which () £ <p <u, (i) xp = x*f (j = L., ), and (i) | f — p || < e

Remark 3.4. Corollary 3.2 is our desired Weierstrass theorem for RRAS
approximation with arbitrary permissible bounding functions. Notice the
manner we have derived our Weierstrass theorem as a corollary of
Theorem 3.1 parallels the derivation of the Weierstrass-type theorem Propo-
sition 1.2 in [1] as a corollary to a theorem (Proposition 1.1) similar in
statement to Theorem 3.1 above. Such an approach (obtaining Weierstrass-
type theorems as corollaries of theorems analogous to Theorem 3.1 above)
is clearly useable for any approximation process whose side conditions are
amenable to (“invariant” under) convex linear combinations.
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